Reputation: 9
k = 0.019;
Pstar = 100;
H = 33;
h = 0.1;
X = 36;
N = round(X/h);
t = zeros(1,N+1);
P = zeros(1,N+1);
P(1) = 84;
t(1) = 0;
yHeun = zeros(1,N+1);
yHeun(1)=84;
a = 1; b = 100;
while b-a >0.5
c = (a+b)/2;
for n = 1:N
t(n+1) = t(n) + h;
Inside = nthroot(sin(2*pi*t/12),15);
Harvest = c*0.5*(Inside+1);
P(n+1) = P(n) + h*(k*P(n)*(Pstar-P(n))-Harvest(n));
if P < 0
P = 0;
end
yHeun(n+1) = yHeun(n) + h*0.5*((k*P(n)*(Pstar-P(n))-Harvest(n))+(k*P(n+1)*(Pstar-P(n+1))-Harvest(n+1)));
end
if sign(yHeun(c)) == sign(yHeun(a))
c = a;
else
c = b;
end
end
disp(['The root is between ' num2str(a) ' and ' num2str(b) '.'])
This is the code i'm trying to run and i know it probably sucks but im terrible at coding and every time i try to run the code, it says:
Attempted to access yHeun(50.5); index must be a positive integer or logical.
Error in Matlab3Q4 (line 30) if sign(yHeun(c)) == sign(yHeun(a))
I don't have ANY idea how to make yHeun(c or a or whatever) return anything that would be an integer. I dont think i did the while+for loop right either.
Question: "Begin with the higher bound of H being 100 (the high value results in a population of 0 after 36 months), and the lower bound being 1. Put the solver from Problem #3 above in the middle of a while loop and keep bisecting the higher and lower bounds of H until the difference between the higher and lower bound is less than 0.5."
Upvotes: 0
Views: 1069
Reputation: 28251
I guess that line 30 (with the error) is this one:
if sign(yHeun(c)) == sign(yHeun(a))
Here, I guess c
is equal to 50.5
, as a result of c = (a+b)/2
above (BTW you can discover whether I guessed right by debugging - try adding disp(c)
before line 30).
To force a number to be an integer, use floor
:
c = floor((a+b)/2);
It seems you are trying to use some sort of divide-and-conquer algorithm; it should be enough to stop when b - a
is equal to 1.
Upvotes: 1