Reputation: 12019
Take the following dataframe:
import pandas as pd
df = pd.DataFrame({'group_name': ['A','A','A','B','B','B'],
'timestamp': [4,6,1000,5,8,100],
'condition': [True,True,False,True,False,True]})
I want to add two columns:
condition
column within each groupI know I can do it with a custom apply, but I'm wondering if anyone has any fun ideas? (Also this is slow when there are many groups.) Here's one solution:
def range_within_group(input_df):
df_to_return = input_df.copy()
df_to_return = df_to_return.sort('timestamp')
df_to_return['order_within_group'] = range(len(df_to_return))
df_to_return['rolling_sum_of_condition'] = df_to_return.condition.cumsum()
return df_to_return
df.groupby('group_name').apply(range_within_group).reset_index(drop=True)
Upvotes: 5
Views: 5312
Reputation: 77951
GroupBy.cumcount
does:
Number each item in each group from 0 to the length of that group - 1.
so simply:
>>> gr = df.sort('timestamp').groupby('group_name')
>>> df['order_within_group'] = gr.cumcount()
>>> df['rolling_sum_of_condition'] = gr['condition'].cumsum()
On pandas >= 0.2
df.sort() is not valid anymore, you have to use df.sort_values()
>>> gr = df.sort_values('timestamp').groupby('group_name')
>>> df['order_within_group'] = gr.cumcount()
>>> df['rolling_sum_of_condition'] = gr['condition'].cumsum()
Upvotes: 7