Reputation: 1715
I have this code snippet in project source code which I work on
void func(void **p,size_t s)
{
*p = malloc(s+sizeof(size_t));
*(((size_t *)(*p))++) = s;
}
and gcc-4.7 does not compile it. gcc returns
lvalue required as increment operand
error message. I changed it into
stp = ((size_t *)(*p));
*(stp ++) = s;
and
stp = ((size_t *)(*p));
*stp = *stp + 1;
*stp = s;
gcc compiles both of them. But application does not work expected. Is conversion true? And is there any tool for conversion?
Upvotes: 0
Views: 130
Reputation: 126243
try
void func(void **p,size_t s)
{
*p = malloc(s+sizeof(size_t));
*(*(size_t **)p)++ = s;
}
This is allocating s
bytes of memory, plus enough extra to hold s
, storing s
at the start of that space and modifying *p
to point just after that.
More sensible and clearer (and avoiding casts!) would be:
void *func(size_t s)
{
size_t *p = malloc(s + sizeof(size_t));
if (p) *p++ = s;
return p;
}
but that requires changing the code that calls this function to take the return value and store it wherever desired, rather than passing an extra pointer as an argument:
some_ptr = func(needed_size);
rather than
func((void **)&some_ptr, needed_size);
also avoiding casts...
Upvotes: 0
Reputation: 44250
func2()
: Adding a variable can increase readability, IMHO. (and inlining will get rid of it, afterwards)func3()
demonstrates that using the return value instead of passing a (opaque) pointer by reference can avoid complexity and casts#include <stdio.h>
#include <stdlib.h>
void func2(void **p,size_t s)
{
size_t **pp;
pp = (size_t **) p; // only one cast
*pp = malloc(s+sizeof(size_t));
if (!*pp) return;
fprintf(stderr,"[mallocd %p]", *pp);
*pp[0] = s;
*pp += 1;
}
void *func3(size_t s)
{
size_t *p;
p = malloc(s+sizeof *p);
if (!p) return NULL;
fprintf(stderr,"[mallocd %p]", p);
p[0] = s;
return p+1;
}
int main(void)
{
char *p = NULL , *p2 = NULL;
func2( (void**) &p, 666); // yet another cast
fprintf(stderr,"returned p := %p\n", p);
p2 = func3( 666); // No cast!!!
fprintf(stderr,"returned p2 := %p\n", p2);
return 0;
}
Upvotes: 0
Reputation: 70941
The idea seems to be to allocate a certain amount of memory (s
) and an additional amount to store this size allocated in the same area as a leading block and then return a pointer to just behind the stored size.
So try this:
void func(void ** p, size_t s)
{
size_t * sp = malloc(s + sizeof s);
if (NULL != sp)
{
*sp = s;
++sp;
}
*p = sp;
}
Btw, freeing the allocated memory, is not straight forward.
A typicall sequence of calls, also freeing what this function returns, would look like this then:
void * pv = NULL;
func(&pv, 42);
if (NULL != pv)
{
/* Use 42 bytes of memory pointed to by pv here. */
free(((char *) pv) - sizeof (size_t));
}
Upvotes: 1
Reputation: 4366
*(((size_t *)(*p))++) = s;
Breakdown:
*(
(
(size_t *) (*p)
) ++
) = s
Means : Take *p
as a pointer to size_t
(let's call that ptr
for after), dereference it (= take the size_t
typed value at the address *p
), assign that value to s and finally increment ptr
(which is to say increment the address in *p
by the sizeof(size_t)
.
You can translate that to:
size_t *ptr = (size_t*)(*p); //second pair of paren is optionnal
s = *ptr;
ptr = ptr + 1; //Warning: This will only modify the variable ptr and not
//the data at its original place *p, if the remainder of
//the program is based on that (which I highly suspect)
//you should do instead :
(size_t*)*p = (size_t*)(*p) + 1; //This also ensures "+1" is treated as
//"add the sizeof(size_t)" because *p
//points to a size_t typed variable
You could also retype a variable and have it point at the same location as p and be done with the casts:
void func(void **p,size_t s)
{
size_t **ptr = p;
*ptr = malloc(s+sizeof(size_t));
if (*ptr == NULL) etc...
*((*ptr)++) = s;
}
Upvotes: 0