Reputation: 901
Having this:
text = word_tokenize("The quick brown fox jumps over the lazy dog")
And running:
nltk.pos_tag(text)
I get:
[('The', 'DT'), ('quick', 'NN'), ('brown', 'NN'), ('fox', 'NN'), ('jumps', 'NNS'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'NN'), ('dog', 'NN')]
This is incorrect. The tags for quick brown lazy
in the sentence should be:
('quick', 'JJ'), ('brown', 'JJ') , ('lazy', 'JJ')
Testing this through their online tool gives the same result; quick
, brown
and fox
should be adjectives not nouns.
Upvotes: 36
Views: 21344
Reputation: 11
def tagPOS(textcontent, taggedtextcontent, defined_tags):
# Write your code here
token = nltk.word_tokenize(textcontent)
nltk_pos_tags = nltk.pos_tag(token)
unigram_pos_tag = nltk.UnigramTagger(model=defined_tags).tag(token)
tagged_pos_tag = [ nltk.tag.str2tuple(word) for word in taggedtextcontent.split() ]
return (nltk_pos_tags,tagged_pos_tag,unigram_pos_tag)
Upvotes: 1
Reputation: 61
Solutions such as changing to the Stanford or Senna or HunPOS tagger will definitely yield results, but here is a much simpler way to experiment with different taggers that are also included within NLTK.
The default POS tagger in NTLK right now is the averaged perceptron tagger. Here's a function that will opt to use the Maxent Treebank Tagger instead:
def treebankTag(text)
words = nltk.word_tokenize(text)
treebankTagger = nltk.data.load('taggers/maxent_treebank_pos_tagger/english.pickle')
return treebankTagger.tag(words)
I have found that the averaged perceptron pre-trained tagger in NLTK is biased to treating some adjectives as nouns, as in your example. The treebank tagger has gotten more adjectives correct for me.
Upvotes: 2
Reputation: 121992
In short:
NLTK is not perfect. In fact, no model is perfect.
Note:
As of NLTK version 3.1, default pos_tag
function is no longer the old MaxEnt English pickle.
It is now the perceptron tagger from @Honnibal's implementation, see nltk.tag.pos_tag
>>> import inspect
>>> print inspect.getsource(pos_tag)
def pos_tag(tokens, tagset=None):
tagger = PerceptronTagger()
return _pos_tag(tokens, tagset, tagger)
Still it's better but not perfect:
>>> from nltk import pos_tag
>>> pos_tag("The quick brown fox jumps over the lazy dog".split())
[('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), ('fox', 'NN'), ('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), ('dog', 'NN')]
At some point, if someone wants TL;DR
solutions, see https://github.com/alvations/nltk_cli
In long:
Try using other tagger (see https://github.com/nltk/nltk/tree/develop/nltk/tag) , e.g.:
Using default MaxEnt POS tagger from NLTK, i.e. nltk.pos_tag
:
>>> from nltk import word_tokenize, pos_tag
>>> text = "The quick brown fox jumps over the lazy dog"
>>> pos_tag(word_tokenize(text))
[('The', 'DT'), ('quick', 'NN'), ('brown', 'NN'), ('fox', 'NN'), ('jumps', 'NNS'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'NN'), ('dog', 'NN')]
Using Stanford POS tagger:
$ cd ~
$ wget http://nlp.stanford.edu/software/stanford-postagger-2015-04-20.zip
$ unzip stanford-postagger-2015-04-20.zip
$ mv stanford-postagger-2015-04-20 stanford-postagger
$ python
>>> from os.path import expanduser
>>> home = expanduser("~")
>>> from nltk.tag.stanford import POSTagger
>>> _path_to_model = home + '/stanford-postagger/models/english-bidirectional-distsim.tagger'
>>> _path_to_jar = home + '/stanford-postagger/stanford-postagger.jar'
>>> st = POSTagger(path_to_model=_path_to_model, path_to_jar=_path_to_jar)
>>> text = "The quick brown fox jumps over the lazy dog"
>>> st.tag(text.split())
[(u'The', u'DT'), (u'quick', u'JJ'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'jumps', u'VBZ'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')]
Using HunPOS (NOTE: the default encoding is ISO-8859-1 not UTF8):
$ cd ~
$ wget https://hunpos.googlecode.com/files/hunpos-1.0-linux.tgz
$ tar zxvf hunpos-1.0-linux.tgz
$ wget https://hunpos.googlecode.com/files/en_wsj.model.gz
$ gzip -d en_wsj.model.gz
$ mv en_wsj.model hunpos-1.0-linux/
$ python
>>> from os.path import expanduser
>>> home = expanduser("~")
>>> from nltk.tag.hunpos import HunposTagger
>>> _path_to_bin = home + '/hunpos-1.0-linux/hunpos-tag'
>>> _path_to_model = home + '/hunpos-1.0-linux/en_wsj.model'
>>> ht = HunposTagger(path_to_model=_path_to_model, path_to_bin=_path_to_bin)
>>> text = "The quick brown fox jumps over the lazy dog"
>>> ht.tag(text.split())
[('The', 'DT'), ('quick', 'JJ'), ('brown', 'JJ'), ('fox', 'NN'), ('jumps', 'NNS'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), ('dog', 'NN')]
Using Senna (Make sure you've the latest version of NLTK, there were some changes made to the API):
$ cd ~
$ wget http://ronan.collobert.com/senna/senna-v3.0.tgz
$ tar zxvf senna-v3.0.tgz
$ python
>>> from os.path import expanduser
>>> home = expanduser("~")
>>> from nltk.tag.senna import SennaTagger
>>> st = SennaTagger(home+'/senna')
>>> text = "The quick brown fox jumps over the lazy dog"
>>> st.tag(text.split())
[('The', u'DT'), ('quick', u'JJ'), ('brown', u'JJ'), ('fox', u'NN'), ('jumps', u'VBZ'), ('over', u'IN'), ('the', u'DT'), ('lazy', u'JJ'), ('dog', u'NN')]
Or try building a better POS tagger:
Complains about pos_tag
accuracy on stackoverflow include:
Issues about NLTK HunPos include:
Issues with NLTK and Stanford POS tagger include:
Upvotes: 70