Reputation: 69
I have a 3D numpy array in this form:
>>>img.shape
(4504932, 2, 2)
>>> img
array([[[15114, 15306],
[15305, 15304]],
[[15305, 15306],
[15303, 15304]],
[[15305, 15306],
[15303, 15304]],
...,
[[15305, 15302],
[15305, 15302]]], dtype=uint16)
Which I want to convert to a 1D numpy array where each entry is the sum of each 2x2 submatrix in the above img numpy array.
I have been able to accomplish this using:
img_new = np.array([i.sum() for i in img])
>>> img_new
array([61029, 61218, 61218, ..., 61214, 61214, 61214], dtype=uint64)
Which is exactly what I want. But this is too slow (takes about 10 seconds). Is there a faster method I could use? I included above img.shape
so you had an idea of the size of this numpy array.
EDIT - ADDITIONAL INFO:
My img
array could also be a 3D array in the form of 4x4, 5x5, 7x7.. etc submatrices. This is specified by the variables sub_rows
and sub_cols
.
Upvotes: 2
Views: 525
Reputation: 221514
You can use np.einsum
-
img_new = np.einsum('ijk->i',img)
Verify results
In [42]: np.array_equal(np.array([i.sum() for i in img]),np.einsum('ijk->i',img))
Out[42]: True
Runtime tests
In [34]: img = np.random.randint(0,10000,(10000,2,2)).astype('uint16')
In [35]: %timeit np.array([i.sum() for i in img]) # Original approach
10 loops, best of 3: 92.4 ms per loop
In [36]: %timeit img.sum(axis=(1, 2)) # From other solution
1000 loops, best of 3: 297 µs per loop
In [37]: %timeit np.einsum('ijk->i',img)
10000 loops, best of 3: 102 µs per loop
Upvotes: 0
Reputation: 1716
Using a numpy method (apply_over_axes
) is usually quicker and indeed that is the case here. I just tested on a 4000x2x2 array:
img = np.random.rand(4000,2,2)
timeit(np.apply_along_axis(np.sum, img, [1,2]))
# 1000 loops, best of 3: 721 us per loop
timeit(np.array([i.sum() for i in img]))
# 100 loops, best of 3: 17.2 ms per loop
Upvotes: 0
Reputation: 280251
img.sum(axis=(1, 2))
sum
allows you to specify an axis or axes along which to sum, rather than just summing the whole array. This allows NumPy to loop over the array in C and perform just a few machine instructions per sum, rather than having to go through the Python bytecode evaluation loop and create a ton of wrapper objects to stick in a list.
Upvotes: 4