Reputation: 19
I was wondering is there any parameter setting when I do the aggregates as below , the result will show the origin column names instead the generic "group.1"
data1 <- aggregate(mtcars[1:4], list(mtcars$am, mtcars$gear),mean)
data1
Group.1 Group.2 mpg cyl disp hp
1 0 3 16.10667 7.466667 326.3000 176.1333
2 0 4 21.05000 5.000000 155.6750 100.7500
3 1 4 26.27500 4.500000 106.6875 83.8750
4 1 5 21.38000 6.000000 202.4800 195.6000
Thank you so much,
by the way , I know the function names(x) in reshape.
Upvotes: 1
Views: 398
Reputation: 887651
You can try the formula method
aggregate(cbind(mpg,cyl,disp,hp)~am+gear, mtcars, mean)
# am gear mpg cyl disp hp
#1 0 3 16.10667 7.466667 326.3000 176.1333
#2 0 4 21.05000 5.000000 155.6750 100.7500
#3 1 4 26.27500 4.500000 106.6875 83.8750
#4 1 5 21.38000 6.000000 202.4800 195.6000
Or rename within the list
aggregate(mtcars[1:4], list(am=mtcars$am, gear=mtcars$gear),mean)
# am gear mpg cyl disp hp
#1 0 3 16.10667 7.466667 326.3000 176.1333
#2 0 4 21.05000 5.000000 155.6750 100.7500
#3 1 4 26.27500 4.500000 106.6875 83.8750
#4 1 5 21.38000 6.000000 202.4800 195.6000
If there are many names, then use setNames
aggregate(mtcars[1:4], setNames(list(mtcars$am, mtcars$gear),
names(mtcars)[9:10]),mean)
If you decide to use dplyr/data.table/sqldf
the equivalent codes are
library(dplyr)
mtcars %>%
group_by(am, gear) %>%
summarise_each(funs(mean), 1:4)
Using data.table
library(data.table)#v1.9.5+
as.data.table(mtcars)[, lapply(.SD, mean), by=.(am, gear), .SDcols=1:4]
Using sqldf
library(sqldf)
nm1 <- toString(sprintf("avg(%s) as %s",
names(mtcars)[1:4], names(mtcars)[1:4]))
fn$sqldf("select am, gear, $nm1 from mtcars group by am, gear")
Upvotes: 2
Reputation: 269905
Since a data frame is also a list use a data frame for the second argument:
aggregate(mtcars[1:4], mtcars[c("am", "gear")], mean)
giving:
am gear mpg cyl disp hp
1 0 3 16.10667 7.466667 326.3000 176.1333
2 0 4 21.05000 5.000000 155.6750 100.7500
3 1 4 26.27500 4.500000 106.6875 83.8750
4 1 5 21.38000 6.000000 202.4800 195.6000
Upvotes: 1