Reputation: 1263
For a large set of randomly distributed points in a 2D lattice, I want to efficiently extract a subarray, which contains only the elements that, approximated as indices, are assigned to non-zero values in a separate 2D binary matrix. Currently, my script is the following:
lat_len = 100 # lattice length
input = np.random.random(size=(1000,2)) * lat_len
binary_matrix = np.random.choice(2, lat_len * lat_len).reshape(lat_len, -1)
def landed(input):
output = []
input_as_indices = np.floor(input)
for i in range(len(input)):
if binary_matrix[input_as_indices[i,0], input_as_indices[i,1]] == 1:
output.append(input[i])
output = np.asarray(output)
return output
However, I suspect there must be a better way of doing this. The above script can take quite long to run for 10000 iterations.
Upvotes: 5
Views: 915
Reputation: 221654
It seems you can squeeze in a noticeable performance boost if you work with linearly indexed arrays. Here's a vectorized implementation to solve our case, similar to @rth's answer, but using linear indexing -
# Get floor-ed indices
idx = np.floor(input).astype(np.int)
# Calculate linear indices
lin_idx = idx[:,0]*lat_len + idx[:,1]
# Index raveled/flattened version of binary_matrix with lin_idx
# to extract and form the desired output
out = input[binary_matrix.ravel()[lin_idx] ==1]
Thus, in short we have:
out = input[binary_matrix.ravel()[idx[:,0]*lat_len + idx[:,1]] ==1]
Runtime tests -
This section compares the proposed approach in this solution against the other solution that uses row-column indexing.
Case #1(Original datasizes):
In [62]: lat_len = 100 # lattice length
...: input = np.random.random(size=(1000,2)) * lat_len
...: binary_matrix = np.random.choice(2, lat_len * lat_len).
reshape(lat_len, -1)
...:
In [63]: idx = np.floor(input).astype(np.int)
In [64]: %timeit input[binary_matrix[idx[:,0], idx[:,1]] == 1]
10000 loops, best of 3: 121 µs per loop
In [65]: %timeit input[binary_matrix.ravel()[idx[:,0]*lat_len + idx[:,1]] ==1]
10000 loops, best of 3: 103 µs per loop
Case #2(Larger datasizes):
In [75]: lat_len = 1000 # lattice length
...: input = np.random.random(size=(100000,2)) * lat_len
...: binary_matrix = np.random.choice(2, lat_len * lat_len).
reshape(lat_len, -1)
...:
In [76]: idx = np.floor(input).astype(np.int)
In [77]: %timeit input[binary_matrix[idx[:,0], idx[:,1]] == 1]
100 loops, best of 3: 18.5 ms per loop
In [78]: %timeit input[binary_matrix.ravel()[idx[:,0]*lat_len + idx[:,1]] ==1]
100 loops, best of 3: 13.1 ms per loop
Thus, the performance boost with this linear indexing seems to be about 20%
- 30%
.
Upvotes: 3
Reputation: 11201
You are correct. The calculation above, can be be done more efficiently without a for loop in python using advanced numpy indexing,
def landed2(input):
idx = np.floor(input).astype(np.int)
mask = binary_matrix[idx[:,0], idx[:,1]] == 1
return input[mask]
res1 = landed(input)
res2 = landed2(input)
np.testing.assert_allclose(res1, res2)
this results in a ~150x speed-up.
Upvotes: 4