Reputation: 4318
Following the example is given in lmfit
, I am trying to set up an example which is similar to my problem. My problem originally is that in my data I can fit two or three models, while my model is highly non-linear but it has for each model just a single free parameter.
My example similar to lmfit
documentation:
x = np.linspace(0, 15, 301)
data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +(-2.6 * np.sin(-0.6 * x + 1.5) * np.exp(-x*x*3.0)+np.random.normal(size=len(x), scale=0.2) ))
def fcn2min(params, x, data):
model=0
for i in range(2):
exec("amp_%d=%s"%(i+1,repr(params['amp_%d'%(i+1)].value)))
exec("shift_%d=%s"%(i+1,repr(params['shift_%d'%(i+1)].value)))
exec("omega_%d=%s"%(i+1,repr(params['omega_%d'%(i+1)].value)))
exec("decay_%d=%s"%(i+1,repr(params['decay_%d'%(i+1)].value)))
model += eval("amp_%d"%(i+1)) * np.sin(x * eval("omega_%d"%(i+1)) + eval("shift_%d"%(i+1))) * np.exp(-x*x*eval("decay_%d"%(i+1)))
return (model-data)/data
params=Parameters()
for i in range(2):
params.add('amp_%d'%(i+1), value= 10, vary=True, min=-3, max=3)
params.add('decay_%d'%(i+1), value= 0.1,vary=True,min=0,max=4.)
params.add('shift_%d'%(i+1), value= 0.0, vary=True,min=-np.pi, max=np.pi)
params.add('omega_%d'%(i+1), value= 3.0, vary=True,min=-2.5, max=2.5)
result = minimize(fcn2min, params, args=(x, data),method='nelder')
The obtained rsults:
final = data + result.residual
# write error report
report_fit(params)
[[Variables]]
amp_1: -1.74789852 (init= 3)
decay_1: 0.05493661 (init= 0.1)
shift_1: 0.07807319 (init= 0)
omega_1: -2.00291964 (init= 2.5)
amp_2: -1.30857699 (init= 3)
decay_2: 0.82303744 (init= 0.1)
shift_2: -0.04742474 (init= 0)
omega_2: 2.44085535 (init= 2.5)
[[Correlations]] (unreported correlations are < 0.100)
The free parameters look completely off however on the final results plot it is clear it follows the distribution of data but the amplitudes are not quite right
try:
import pylab
pylab.plot(x, data, 'k+')
pylab.plot(x, final, 'r')
pylab.show()
except:
pass
Any suggestion for the modification of the code in order to get the right results?
Upvotes: 1
Views: 244
Reputation: 26027
Ok, I think I found the issue. I am not sure about the purpose of the line
return (model-data)/data
but it should just be
return (model-data)
since that it what you want to minimize.
Furthermore, you should also choose initial values that are in the range. The modified code will result in the following output:
[[Variables]]
amp_1: 5.23253723 (init= 10)
decay_1: 0.02762246 (init= 0.1)
shift_1: -0.40774606 (init= 0)
omega_1: 2.06744256 (init= 3)
amp_2: 2.49467996 (init= 10)
decay_2: 0.39205207 (init= 0.1)
shift_2: 0.23347938 (init= 0)
omega_2: -0.71995187 (init= 3)
[[Correlations]] (unreported correlations are < 0.100)
Here is the entire code:
from lmfit import minimize, Parameters, Parameter, report_fit
import numpy as np
#http://cars9.uchicago.edu/software/python/lmfit/parameters.html
# create data to be fitted
x = np.linspace(0, 15, 301)
data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
(-2.6 * np.sin(-0.6 * x + 1.5) * np.exp(-x*x*3.0)+np.random.normal(size=len(x), scale=0.2) ))
def fcn2min(params, x, data):
model=0
for i in range(2):
exec("amp_%d=%s"%(i+1,repr(params['amp_%d'%(i+1)].value)))
exec("shift_%d=%s"%(i+1,repr(params['shift_%d'%(i+1)].value)))
exec("omega_%d=%s"%(i+1,repr(params['omega_%d'%(i+1)].value)))
exec("decay_%d=%s"%(i+1,repr(params['decay_%d'%(i+1)].value)))
model += eval("amp_%d"%(i+1)) * np.sin(x * eval("omega_%d"%(i+1)) + eval("shift_%d"%(i+1))) * np.exp(-x*x*eval("decay_%d"%(i+1)))
return (model-data)#/data
params=Parameters()
for i in range(2):
params.add('amp_%d'%(i+1), value= 10, vary=True, min=0, max=13)
params.add('decay_%d'%(i+1), value= 0.1,vary=True,min=0,max=1.4)
params.add('shift_%d'%(i+1), value= 0.0, vary=True,min=-np.pi, max=np.pi)
params.add('omega_%d'%(i+1), value= 3.0, vary=True,min=-3.5, max=3.5)
result = minimize(fcn2min, params, args=(x, data),method='nelder')
final = data + result.residual
report_fit(params)
try:
import pylab
pylab.plot(x, data, 'k+')
pylab.plot(x, final, 'r')
pylab.show()
except:
pass
Upvotes: 3