Reputation: 60759
I want to adjust the colour levels of an image in python. I can use any python library that can easily be installed on my Ubuntu desktop. I want to do the same as ImageMagick's -level
( http://www.imagemagick.org/www/command-line-options.html#level ). PIL (Python Image Library) doesn't seem to have it. I have been calling convert
on the image and then reading in the file back again, but that seems wasteful. Is there a better / faster way?
Upvotes: 5
Views: 5608
Reputation: 2743
using code from this link here
# Auto leveling for image
def levels(data, all_same = 0, clip = 0):
if data.mode not in ['RGB', 'CMYK']:
return data
## get redistriputed histogram scalled smoothly
lut = _makelut(data, all_same, clip)
## update image points using histogram
data = data.point(lut)
return data
def _find_hi_lo(lut, clip):
min = None
max = None
for i in range(len(lut)):
if lut[i] > clip:
min = i
break
lut.reverse()
for i in range(len(lut)):
if lut[i] > clip:
max = 255 - i
break
return min, max
def _scale(channels, min, max):
lut = []
# hefny fix
ratio = float(max-min)
if ratio == 0:
ratio = 1
for i in range (channels):
for i in range(256):
value = int((i - min)*(255.0/ratio))
if value < 0:
value = 0
if value > 255:
value = 255
lut.append(value)
return lut
def _makelut(data, all_same, clip):
histogram = data.histogram()
lut = []
r, g, b, k = [], [], [], []
channels = len(histogram)/256
for i in range(256):
r.append(histogram[i])
g.append(histogram[256+i])
b.append(histogram[512+i])
if channels == 4:
for i in range(256):
k.append(histogram[768+i])
rmin, rmax = _find_hi_lo(r, clip)
gmin, gmax = _find_hi_lo(g, clip)
bmin, bmax = _find_hi_lo(b, clip)
if channels == 4:
kmin, kmax = _find_hi_lo(k)
else:
kmin, kmax = 128, 128
if all_same == 1:
min_max = [rmin, gmin, bmin, kmin, rmax, gmax, bmax, kmax]
min_max.sort()
lut = _scale(channels, min_max[0], min_max[-1])
else:
r_lut = _scale(1, rmin, rmax)
g_lut = _scale(1, gmin, gmax)
b_lut = _scale(1, bmin, bmax)
if channels == 4:
k_lut = _scale(1, kmin, kmax)
lut = []
for i in range (256):
lut.append(r_lut[i])
for i in range (256):
lut.append(g_lut[i])
for i in range (256):
lut.append(b_lut[i])
if channels == 4:
for i in range (256):
lut.append(k_lut[i])
return lut
from PIL import ImageEnhance , ImageDraw , Image
img = Image.open(file_path)
img2 = levels(img)
Upvotes: 0
Reputation: 4848
This is the code that I use. Levels are done, 1) on the brightness channel of the HSV image and, 2) according to the desired amount of blacks and whites pixels in the result.
The code can be modified to avoid to use pillow since openCV use numpy arrays as internal data. If doing so, be aware that openCV native colorspace is BGR. You will have to change the calls to cv.cvtColor() accordingly.
from PIL import Image
import numpy as np
import cv2 as cv
fileName = 'foo.JPG'
fileOut = 'bar.JPG'
imgPil = Image.open(fileName)
imgCV = np.asarray(imgPil, np.uint8)
hsv = cv.cvtColor(imgCV, cv.COLOR_RGB2HSV)
h,s,v = cv.split(hsv)
ceil = np.percentile(v,95) # 5% of pixels will be white
floor = np.percentile(v,5) # 5% of pixels will be black
a = 255/(ceil-floor)
b = floor*255/(floor-ceil)
v = np.maximum(0,np.minimum(255,v*a+b)).astype(np.uint8)
hsv = cv.merge((h,s,v))
rgb = cv.cvtColor(hsv, cv.COLOR_HSV2RGB)
imgPil = Image.fromarray(rgb)
imgPil.save(fileOut)
Upvotes: 2
Reputation: 95991
If I understood correctly the -level
option of ImageMagick, then the level_image
function I provide should do what you want.
Two things to note:
The code:
import colorsys
class Level(object):
def __init__(self, minv, maxv, gamma):
self.minv= minv/255.0
self.maxv= maxv/255.0
self._interval= self.maxv - self.minv
self._invgamma= 1.0/gamma
def new_level(self, value):
if value <= self.minv: return 0.0
if value >= self.maxv: return 1.0
return ((value - self.minv)/self._interval)**self._invgamma
def convert_and_level(self, band_values):
h, s, v= colorsys.rgb_to_hsv(*(i/255.0 for i in band_values))
new_v= self.new_level(v)
return tuple(int(255*i)
for i
in colorsys.hsv_to_rgb(h, s, new_v))
def level_image(image, minv=0, maxv=255, gamma=1.0):
"""Level the brightness of image (a PIL.Image instance)
All values ≤ minv will become 0
All values ≥ maxv will become 255
gamma controls the curve for all values between minv and maxv"""
if image.mode != "RGB":
raise ValueError("this works with RGB images only")
new_image= image.copy()
leveller= Level(minv, maxv, gamma)
levelled_data= [
leveller.convert_and_level(data)
for data in image.getdata()]
new_image.putdata(levelled_data)
return new_image
If there is some way to do the RGB→HSV conversion (and vice versa) using PIL, then one can split into the H, S, V bands, use the .point
method of the V band and convert back to RGB, speeding up the process by a lot; however, I haven't found such a way.
Upvotes: 7
Reputation: 17581
Why not use PythonMagick? It's a Python interface to Image Magick.
Upvotes: 3