Reputation: 11293
I am trying to do this function in-place without a loop:
for i in xrange(2):
trend[i] = np.convolve(dat[i,0], aW3[:,i], 'same').sum()
My best attempt is as follows:
trend[:2] = np.apply_along_axis(
func1d=lambda x: np.convolve(x, aW3[:,i], 'same').sum(),
axis=1,
arr=dat[:2,0])
but I can't figure out how to correctly index aW3[:,i]
through func1d
aW3 = np.array( [[ 0.259, 0.407],
[ 0.37 , 0.407],
[ 0.259, 0.185],
[ 0.111, 0. ]])
dat = np.array([0.02360784, 0.0227628 , 0.0386366 , 0.03338596, 0.03141621, 0.03430469])
dat = dat.reshape(dat.shape[0], 1) # in columns
Upvotes: 0
Views: 406
Reputation: 221584
It seems you can just use np.einsum
for a vectorized
solution, like so -
trend = np.einsum('i,ji->i',dat[0:aW3.shape[1],0],aW3)
Or with broadcasting
-
trend = (dat[0:aW3.shape[1],0]*aW3).sum(0)
Upvotes: 1
Reputation: 8982
trend = np.fromiter((np.convolve(dat[i,0], aW3[:,i], 'same').sum() for i in xrange(2)), float)
Upvotes: 1