Reputation: 11478
Current Code:
For each element in the MapEntryTable
, check the properties IsDisplayedColumn
and IsReturnColumn
and if they are true then add the element to another set of lists, its running time would be O(n)
, there would be many elements with both properties as false, so will not get added to any of the lists in the loop.
foreach (var mapEntry in MapEntryTable)
{
if (mapEntry.IsDisplayedColumn)
Type1.DisplayColumnId.Add(mapEntry.OutputColumnId);
if (mapEntry.IsReturnColumn)
Type1.ReturnColumnId.Add(mapEntry.OutputColumnId);
}
Following is the Linq version of doing the same:
MapEntryTable.Where(x => x.IsDisplayedColumn == true).ToList().ForEach(mapEntry => Type1.DisplayColumnId.Add(mapEntry.OutputColumnId));
MapEntryTable.Where(x => x.IsReturnColumn == true).ToList().ForEach(mapEntry => Type1.ReturnColumnId.Add(mapEntry.OutputColumnId));
I am converting all such foreach code to linq, as I am learning it, but my question is:
Do I get any advantage of Linq conversion in this case or is it a disadvantage ?
Is there a better way to do the same using Linq
UPDATE:
Consider the condition where out of 1000 elements in the list 80% have both properties false, then does where provides me a benefit of quickly finding elements with a given condition.
Type1
is a custom type with set of List<int>
structures, DisplayColumnId
and ReturnColumnId
Upvotes: 2
Views: 664
Reputation: 21568
Your LINQ isn't quite right as you're converting the results of Where
to a List and then pseudo-iterating over those results with ForEach
to add to another list. Use ToList
or AddRange
for converting or adding sequences to lists.
Example, where overwriting list1
(if it were actually a List<T>
):
list1 = MapEntryTable.Where(x => x.IsDisplayedColumn == true)
.Select(mapEntry => mapEntry.OutputColumnId).ToList();
or to append:
list1.AddRange(MapEntryTable.Where(x => x.IsDisplayedColumn == true)
.Select(mapEntry => mapEntry.OutputColumnId));
Upvotes: 1
Reputation: 5357
The performance of foreach vs Linq ForEach are almost exactly the same, within nano seconds of each other. Assuming you have the same internal logic in the loop in both versions when testing.
However a for loop, outperforms both by a LARGE margin. for(int i; i < count; ++i) is much faster than both. Because a for loop doesn't rely on an IEnumerable implementation (overhead). The for loop compiles to x86 register index/jump code. It maintains an incrementor, and then it's up to you to retrieve the item by it's index in the loop.
Using a Linq ForEach loop though does have a big disadvantage. You cannot break out of the loop. If you need to do that you have to maintain a boolean like "breakLoop = false", set it to true, and have each recursive exit if breakLoop is true... Bad performing there. Secondly you cannot use continue, instead you use "return".
I never use Linq's foreach loop.
If you are dealing with linq, e.g.
List<Thing> things = .....;
var oldThings = things.Where(p.DateTime.Year < DateTime.Now.Year);
That internally will foreach with linq and give you back only the items with a year less than the current year. Cool..
But if I am doing this:
List<Thing> things = new List<Thing>();
foreach(XElement node in Results) {
things.Add(new Thing(node));
}
I don't need to use a linq for each loop. Even if I did...
foreach(var node in thingNodes.Where(p => p.NodeType == "Thing") {
if (node.Ignore) {
continue;
}
thing.Add(node);
}
even though I could write that cleaner like
foreach(var node in thingNodes.Where(p => p.NodeType == "Thing" && !node.Ignore) {
thing.Add(node);
}
There is no real reason I can think of to do this..>
things.ForEach(thing => {
//do something
//can't break
//can't continue
return; //<- continue
});
And if I want the fastest loop possible,
for (int i = 0; i < things.Count; ++i) {
var thing = things[i];
//do something
}
Will be faster.
Upvotes: 1
Reputation: 8193
I would say stick with the original way with the foreach
loop, since you are only iterating through the list 1 time over.
also your linq should look more like this:
list1.DisplayColumnId.AddRange(MapEntryTable.Where(x => x.IsDisplayedColumn).Select(mapEntry => mapEntry.OutputColumnId));
list2.ReturnColumnId.AddRange(MapEntryTable.Where(x => x.IsReturnColumn).Select(mapEntry => mapEntry.OutputColumnId));
Upvotes: 1
Reputation: 203818
ForEach
ins't a LINQ method. It's a method of List
. And not only is it not a part of LINQ, it's very much against the very values and patterns of LINQ. Eric Lippet explains this in a blog post that was written when he was a principle developer on the C# compiler team.
Your "LINQ" approach also:
Where
operator. You're acting on the items in the query, rather than performing a query. LINQ is a querying tool, not a tool for manipulating data sets.A solution that uses LINQ as much as is it is designed for would be to use it like so:
foreach (var mapEntry in MapEntryTable.Where(entry => mapEntry.IsDisplayedColumn))
list1.DisplayColumnId.Add(mapEntry.OutputColumnId);
foreach (var mapEntry in MapEntryTable.Where(entry => mapEntry.IsReturnColumn))
list2.ReturnColumnId.Add(mapEntry.OutputColumnId);
Upvotes: 7
Reputation: 1643
In C#, to do what you want functionally in one call, you have to write your own partition method. If you are open to using F#, you can use List.Partition<'T>
https://msdn.microsoft.com/en-us/library/ee353782.aspx
Upvotes: 0