Reputation: 1910
Here is an example creating a point cloud which I then want to fit a grided surface to. The problem comes at the end when I try to pass in meshgrid arrays to a function which interpolated the data:
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# Create some point cloud data:
c = 1
a = 3
b = 4
slice = {}
t = np.linspace(0,2*np.pi,50)
for s in np.linspace(1,9,10):
c = 5*s
r = (-s**2+10.0*s)/10.0
X = r*np.cos(t)
Y = r*np.sin(t)
Z = c*(Y**2/b**2 - X**2/a**2) + c
slice[str(int(s))] = np.vstack([X,Y,Z])
# Visualize it:
fig = plt.figure()
ax = fig.gca(projection = '3d')
for k,v in slice.iteritems():
print type(v)
print np.shape(v)
X = v[0,:]
Y = v[1,:]
Z = v[2,:]
ax.scatter(X,Y,Z)
plt.show()
It looks like this:
I now need to create a surface mesh based on these points. There are multiple interpretations of surface in this case because I just have a point cloud rather than a function z = f(x,y) but the correct surface in this case should be the one that creates a hollow "warped cylinder". I thought of attacking the problem like this:
# stack all points from each slice into one vector for each coordinate:
Xs = []
Ys = []
Zs = []
for k,v in slice.iteritems():
#ax.plot_surface(X,Y,Z)
X = v[0,:]
Y = v[1,:]
Z = v[2,:]
Xs = np.hstack((Xs,X))
Ys = np.hstack((Ys,Y))
Zs = np.hstack((Zs,Z))
XX, YY = np.meshgrid(Xs,Ys)
from scipy import interpolate
f = interpolate.interp2d(Xs,Ys,Zs, kind = 'cubic')
ZZ = f(XX,YY)
which I would then be able to plot using
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot_surface(XX, YY, ZZ)
plt.show()
However the interpolated function does not seem to accept arrays as inputs so this method might not work. Can anyone come up with a suggestion on how to do this properly?
Actually the data is obviously not able to be represented as a function as it would not be one to one.
Upvotes: 5
Views: 4206
Reputation: 174
I stumbled upon the same question and wondered why it has not been solved in the last 7 years. Here's my solution for any future reader based on plot_trisurf (and the corresponding code examples).
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
# Create some point cloud data:
a = 3
b = 4
# def grid of parametric variables
u = np.linspace(0,2*np.pi,50)
v = np.linspace(1,9,50)
U, V = np.meshgrid(u, v)
U, V = U.flatten(), V.flatten()
# Triangulate parameter space to determine the triangles
tri = mtri.Triangulation(U, V)
# get the transformed data as list
X,Y,Z = [],[],[]
for _u in u:
for _v in v:
r = (-_v**2+10.0*_v)/10.0
x = r*np.cos(_u)
y = r*np.sin(_u)
z = 5*_v*(y**2/b**2 - x**2/a**2) + 5*_v
X.append(x)
Y.append(y)
Z.append(z)
# Visualize it:
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.scatter(X,Y,Z, s=1, c='r')
ax.plot_trisurf(X, Y, Z, triangles=tri.triangles, alpha=.5)
plt.show()
This produces the following plot.
Upvotes: 2