Reputation: 2313
template<unsigned I>
struct factorial{
enum{
value = I * factorial<I -1>::value
};
};
template<>
struct factorial<0>
{
enum{ value = 1};
};
template<unsigned pow>
inline double power(double const& value){
return value * power<pow-1>(value);
}
template<>
inline double power<1>(double const& value){
return value;
}
template<>
inline double power<0>(double const& value){
return 1;
}
template<unsigned term>
inline double taylor_polynomial(double const& x){
return power<term>(x) / factorial<term>::value;
}
template <unsigned term>
inline double taylor_sine_term(double const& x) {
return (power<term>(-1) / factorial<(2*term)+1>::value) * power<(2*term)+1>(x);
}
template<unsigned terms>
inline double taylor_sine(double const& x){
return taylor_sine_term<terms-1>(x) + taylor_sine_term<terms>(x);
}
template <>
inline double taylor_sine<0>(double const& x) {
return taylor_sine_term<0>(x);
}
Using the following code I have attempted to implement the sin()
function based on an N term taylor series, but when i compare the results of the function the results are incorrect and I'm not sure why. Running the following code:
std::cout<<sin(2 * M_PI * 0.5)<<" "<<taylor_sine<13>(2 * M_PI * 0.5);
Results in 1.22465e-16 -16546.9
To the best of my knowledge i am calculating the series correctly so i'm not sure what is going wrong.
Upvotes: 0
Views: 174
Reputation: 303147
You're calling the wrong function to recurse:
template<unsigned terms>
inline double taylor_sine(double const& x){
return taylor_sine_term<terms-1>(x) + taylor_sine_term<terms>(x);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
}
You're adding term n
and term n-1
instead of adding term n
and the taylor series of n-1
terms.
Upvotes: 3