Reputation: 33
Using the information described in this question, Combining random forest models in scikit learn ,I have attempted to combine several random forest classifiers into a single classifier using python2.7.10 and sklearn 0.16.1, but get this exception in some cases:
Traceback (most recent call last):
File "sktest.py", line 50, in <module>
predict(rf)
File "sktest.py", line 46, in predict
Y = rf.predict(X)
File "/python-2.7.10/lib/python2.7/site-packages/sklearn/ensemble/forest.py", line 462, in predict
proba = self.predict_proba(X)
File "/python-2.7.10/lib/python2.7/site-packages/sklearn/ensemble/forest.py", line 520, in predict_proba
proba += all_proba[j]
ValueError: non-broadcastable output operand with shape (39,1) doesn't match the broadcast shape (39,2)
The application is to create a number of random forest classifiers on many processors and combine these objects into a single classifier available to all processors.
The test code to produce this exception is shown below, it creates 5 classifiers with a random number of arrays of 10 features. If yfrac is changed to 0.5, the code will not give an exception. Is this a valid method of combining classifier objects? Also, this same exception is created when using warm_start to add trees to an existing RandomForestClassifier when n_estimators is increased and data added via fit.
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
from numpy import zeros,random,logical_or,where,array
random.seed(1)
def generate_rf(X_train, y_train, X_test, y_test, numTrees=50):
rf = RandomForestClassifier(n_estimators=numTrees, n_jobs=-1)
rf.fit(X_train, y_train)
print "rf score ", rf.score(X_test, y_test)
return rf
def combine_rfs(rf_a, rf_b):
rf_a.estimators_ += rf_b.estimators_
rf_a.n_estimators = len(rf_a.estimators_)
return rf_a
def make_data(ndata, yfrac=0.5):
nx = int(random.uniform(10,100))
X = zeros((nx,ndata))
Y = zeros(nx)
for n in range(ndata):
rnA = random.random()*10**(random.random()*5)
X[:,n] = random.uniform(-rnA,rnA, nx)
Y = logical_or(Y,where(X[:,n] > yfrac*rnA, 1.,0.))
return X, Y
def train(ntrain=5, ndata=10, test_frac=0.2, yfrac=0.5):
rfs = []
for u in range(ntrain):
X, Y = make_data(ndata, yfrac=yfrac)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_frac)
#Train the random forest and add to list
rfs.append(generate_rf(X_train, Y_train, X_test, Y_test))
# Combine the block classifiers into a single classifier
return reduce(combine_rfs, rfs)
def predict(rf, ndata=10):
X, Y = make_data(ndata)
Y = rf.predict(X)
if __name__ == "__main__":
rf = train(yfrac = 0.42)
predict(rf)
Upvotes: 3
Views: 494
Reputation: 2487
Your first RandomForest only gets positive cases, while other RandomForests get both cases. As a result, their DecisionTree results are incompatible with each other. Run your code with this replaced train() function:
def train(ntrain=5, ndata=10, test_frac=0.2, yfrac=0.5):
rfs = []
for u in range(ntrain):
X, Y = make_data(ndata, yfrac=yfrac)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_frac)
assert Y_train.sum() != 0
assert Y_train.sum() != len( Y_train )
#Train the random forest and add to list
rfs.append(generate_rf(X_train, Y_train, X_test, Y_test))
# Combine the block classifiers into a single classifier
return reduce(combine_rfs, rfs)
Use a StratifiedShuffleSplit cross-validation generator rather than train_test_split, and check to make sure each RF gets both (all) classes in the training set.
Upvotes: 2