Reputation: 4742
I'm having trouble initializing a fixed length array. My attempts so far all result in the same "use of possibly uninitialized variable: foo_array
" error:
#[derive(Debug)]
struct Foo { a: u32, b: u32 }
impl Default for Foo {
fn default() -> Foo { Foo{a:1, b:2} }
}
pub fn main() {
let mut foo_array: [Foo; 10];
// Do something here to in-place initialize foo_array?
for f in foo_array.iter() {
println!("{:?}", f);
}
}
error[E0381]: use of possibly uninitialized variable: `foo_array`
--> src/main.rs:13:14
|
13 | for f in foo_array.iter() {
| ^^^^^^^^^ use of possibly uninitialized `foo_array`
I implemented the Default
trait, but Rust does not seem to call this by default akin to a C++ constructor.
What is the proper way to initialize a fixed length array? I'd like to do an efficient in-place initialization rather than some sort of copy.
Related: Why is the Copy trait needed for default (struct valued) array initialization?
Related: Is there a way to not have to initialize arrays twice?
Upvotes: 49
Views: 69249
Reputation: 13628
The easiest way is to derive Copy
on your type and initialize the array with that, copying the element N
times:
#[derive(Copy)]
struct Foo {
a: u32,
b: u32,
}
let mut foo_array = [Foo { a: 1, b: 2 }; 10];
If you want to avoid copying, there are a couple options. You can use the Default
trait:
let mut foo_array: [Foo; 10] = Default::default();
However, this is limited to arrays up to 32 elements. With const generics, it is now possible for the standard library to provide Default
for all arrays. However, this would be a backward incompatible change for subtle reasons that are being worked on.
For now, you can take advantage of the fact that const
values are also allowed in array repetition expressions:
const FOO: Foo = Foo { a: 1, b: 2 };
let mut foo_array = [FOO; 10];
As of Rust 1.55, you can use array::map
:
#![feature(array_map)]
let mut foo_array = [(); 10].map(|_| Foo::default())
Upvotes: 13
Reputation: 2983
You can use the arrayvec
crate:
Cargo.toml
[package]
name = "initialize_array"
version = "0.1.0"
edition = "2018"
[dependencies]
arrayvec = "0.7.2"
src/main.rs
use arrayvec::ArrayVec;
use std::iter;
#[derive(Clone)]
struct Foo {
a: u32,
b: u32,
}
fn main() {
let foo_array: [Foo; 10] = iter::repeat(Foo { a: 10, b: 10 })
.take(10)
.collect::<ArrayVec<_, 10>>()
.into_inner()
.unwrap_or_else(|_| unreachable!());
}
Upvotes: 8
Reputation: 16670
The safe but somewhat inefficient solution:
#[derive(Copy, Clone, Debug)]
struct Foo {
a: u32,
b: u32,
}
fn main() {
let mut foo_array = [Foo { a: 10, b: 10 }; 10];
}
Since you're specifically asking for a solution without copies:
use std::mem::MaybeUninit;
#[derive(Debug)]
struct Foo {
a: u32,
b: u32,
}
// We're just implementing Drop to prove there are no unnecessary copies.
impl Drop for Foo {
fn drop(&mut self) {
println!("Destructor running for a Foo");
}
}
pub fn main() {
let array = {
// Create an array of uninitialized values.
let mut array: [MaybeUninit<Foo>; 10] = unsafe { MaybeUninit::uninit().assume_init() };
for (i, element) in array.iter_mut().enumerate() {
let foo = Foo { a: i as u32, b: 0 };
*element = MaybeUninit::new(foo);
}
unsafe { std::mem::transmute::<_, [Foo; 10]>(array) }
};
for element in array.iter() {
println!("{:?}", element);
}
}
This is recommended by the documentation of MaybeUninit
.
Upvotes: 44