Reputation: 1345
Assume that I have the following dataset
table = [[datetime.datetime(2015, 3, 31), 1, 0.5, 1],
[datetime.datetime(2015, 6, 30), 1, 0.5, 0.5],
[datetime.datetime(2015, 9, 30), 1, 0.5, 0.5],
[datetime.datetime(2015, 12, 31), 1, 2, 0.5],
[datetime.datetime(2015, 3, 31), 2, 0.5, 1.5],
[datetime.datetime(2015, 6, 30), 2, 0.5, 0.5],
[datetime.datetime(2015, 9, 30), 2, 0.5, 0.5],
[datetime.datetime(2015, 12, 31), 2, 2, 0.5]]
df = pd.DataFrame(table, columns=['Date', 'Id', 'Value', 'Old'])
Is there any way to change the first element of Value
to the corresponding element of Old
if the element of Value
is smaller than the one in Old
? It needs to be done by each group (based on Id
). My new table would thus look like
Date Id Value Old
0 2015-03-31 1 1.0 1.0
1 2015-06-30 1 0.5 0.5
2 2015-09-30 1 0.5 0.5
3 2015-12-31 1 2.0 0.5
4 2015-03-31 2 1.5 1.5
5 2015-06-30 2 0.5 0.5
6 2015-09-30 2 0.5 0.5
7 2015-12-31 2 2.0 0.5
Thanks, tingis
Upvotes: 0
Views: 2148
Reputation: 24742
Since you only want to change the first element of each group, you can do a customized groupby apply function to do this.
import pandas as pd
import datetime
# your data
# =================================================
table = [[datetime.datetime(2015, 3, 31), 1, 0.5, 1],
[datetime.datetime(2015, 6, 30), 1, 0.5, 0.5],
[datetime.datetime(2015, 9, 30), 1, 0.5, 0.5],
[datetime.datetime(2015, 12, 31), 1, 2, 0.5],
[datetime.datetime(2015, 3, 31), 2, 0.5, 1.5],
[datetime.datetime(2015, 6, 30), 2, 0.5, 0.5],
[datetime.datetime(2015, 9, 30), 2, 0.5, 0.5],
[datetime.datetime(2015, 12, 31), 2, 2, 0.5]]
df = pd.DataFrame(table, columns=['Date', 'Id', 'Value', 'Old'])
print(df)
Date Id Value Old
0 2015-03-31 1 0.5 1.0
1 2015-06-30 1 0.5 0.5
2 2015-09-30 1 0.5 0.5
3 2015-12-31 1 2.0 0.5
4 2015-03-31 2 0.5 1.5
5 2015-06-30 2 0.5 0.5
6 2015-09-30 2 0.5 0.5
7 2015-12-31 2 2.0 0.5
# processing
# ====================================
def func(group):
if group.Value.values[0] < group.Old.values[0]:
group.Value.values[0] = group.Old.values[0]
return group
df.groupby('Id').apply(func)
Date Id Value Old
0 2015-03-31 1 1.0 1.0
1 2015-06-30 1 0.5 0.5
2 2015-09-30 1 0.5 0.5
3 2015-12-31 1 2.0 0.5
4 2015-03-31 2 1.5 1.5
5 2015-06-30 2 0.5 0.5
6 2015-09-30 2 0.5 0.5
7 2015-12-31 2 2.0 0.5
Upvotes: 2