Reputation: 3282
I've got two tables:
I'm trying to join on timestamp and id from a name table. I'm doing it by getting all timestamps and ids associated with a given name and retrieving data from data table for those entries.
It's really fast to do it in CQL. I expected Spark Cassandra to be equally fast at it, but instead it seems to be doing a full table scan. It might be due to not knowing which fields are partition/primary key. Though I don't seem to be able to find a way to tell it the mappings.
How can I make this join as efficient as it should be? Here's my code sample:
private static void notSoEfficientJoin() {
SparkConf conf = new SparkConf().setAppName("Simple Application")
.setMaster("local[*]")
.set("spark.cassandra.connection.host", "localhost")
.set("spark.driver.allowMultipleContexts", "true");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<DataKey, NameRow> nameIndexRDD = javaFunctions(sc).cassandraTable("my_keyspace", "name", mapRowTo(NameRow.class)).where("name = 'John'")
.keyBy(new Function<NameRow, DataKey>() {
@Override
public DataKey call(NameRow v1) throws Exception {
return new DataKey(v1.timestamp, v1.id);
}
});
JavaPairRDD<DataKey, DataRow> dataRDD = javaFunctions(sc).cassandraTable("my_keyspace", "data", mapRowTo(DataRow.class))
.keyBy(new Function<DataRow, DataKey>() {
@Override
public DataKey call(DataRow v1) throws Exception {
return new DataKey(v1.timestamp, v1.id);
}
});
JavaRDD<String> cassandraRowsRDD = nameIndexRDD.join(dataRDD)
.map(new Function<Tuple2<DataKey, Tuple2<NameRow, DataRow>>, String>() {
@Override
public String call(Tuple2<DataKey, Tuple2<NameRow, DataRow>> v1) throws Exception {
NameRow nameRow = v1._2()._1();
DataRow dataRow = v1._2()._2();
return nameRow + " " + dataRow;
}
});
List<String> collect = cassandraRowsRDD.collect();
}
Upvotes: 2
Views: 1711
Reputation: 3282
The way to do this join more efficiently is to actually invoke joinWithCassandraTable
this can be done by wrapping results with another javaFunctions
call:
private static void moreEfficientJoin() {
SparkConf conf = new SparkConf().setAppName("Simple Application")
.setMaster("local[*]")
.set("spark.cassandra.connection.host", "localhost")
.set("spark.driver.allowMultipleContexts", "true");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<DataKey> nameIndexRDD = sc.parallelize(javaFunctions(sc).cassandraTable("my_keyspace", "name", mapRowTo(DataKey.class))
.where("name = 'John'")
.collect());
JavaRDD<Data> dataRDD = javaFunctions(nameIndexRDD).joinWithCassandraTable("my_keyspace", "data", allColumns, someColumns("timestamp", "id"), mapRowTo(Data.class), mapToRow(DataKey.class))
.map(new Function<Tuple2<DataKey, Data>, Data>() {
@Override
public Data call(Tuple2<DataKey, Data> v1) throws Exception {
return v1._2();
}
});
List<Data> data = dataRDD.collect();
}
The important thing is to wrap a JavaRDD
with javaFunctions
. So it is possible to not call collect
and sc.parallelize
on nameIndexRDD
Upvotes: 2