Reputation: 369
I am currently using Spark 1.4.0
, and started using the ML pipeline framework
.
I ran the example program "ml.JavaSimpleTextClassificationPipeline" which uses the LogisticRegression
. But I wanted to do multiclass classification, so I used DecisionTreeClassifier
present in the org.apache.spark.ml.classification
package.
The model got trained properly using the fit
method, but when testing the model using the print
statement from above example, I am getting following error that 'probability' column is not present.
Is this column present only for LogisticRegression
? If so can I see what are the possible columns present after DecisionTreeClassifier
predicts the output?
Also, one morething how can I convert the predicted output back to String format if I am using StringIndexer
.
org.apache.spark.sql.AnalysisException: cannot resolve 'probability' given input columns id, prediction, labelStr, data, features, words, label;
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:63)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:52)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:285)
at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionUp$1(QueryPlan.scala:108)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2$$anonfun$apply$2.apply(QueryPlan.scala:123)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:122)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:127)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:52)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:50)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:98)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:50)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:42)
at org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:920)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:131)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$logicalPlanToDataFrame(DataFrame.scala:154)
at org.apache.spark.sql.DataFrame.select(DataFrame.scala:595)
at org.apache.spark.sql.DataFrame.select(DataFrame.scala:611)
at org.apache.spark.sql.DataFrame.select(DataFrame.scala:611)
at com.xxx.ml.xxx.execute(xxx.java:129)
Upvotes: 1
Views: 6433
Reputation: 1518
this is because "probability" is not a column in your rdd. If you would like to operate on the probability field, you should add it.
Upvotes: 1