Reputation: 2553
I have 2 arrays, A and B. I want to form a new array C with same dimension as B where each element will show SUM(A) for A > B
Below is my working code
A = [1:1:1000]
B=[1:1:100]
for n = 1:numel(B)
C(n) = sum(A(A>B(n)));
end
However, when A has millions of rows and B has thousands, and I have to do similar calculations for 20 array-couples,it takes insane amount of time.
Is there any faster way?
For example, histcounts is pretty fast, but it counts, rather than summing.
Thanks
Upvotes: 7
Views: 365
Reputation: 221524
You had the right ideas with histcounts
, as you are basically "accumulating" certain A
elements based on binning
. This binning operation could be done with histc
. Listed in this post is a solution that starts off with similar steps as listed in @David's answer
and then uses histc
to bin and sum up selective elements from A
to get us the desired output and all of it in a vectorized manner. Here's the implementation -
%// Sort A and B and also get sorted B indices
sA = sort(A);
[sB,sortedB_idx] = sort(B);
[~,bin] = histc(sB,sA); %// Bin sorted B onto sorted A
C_out = zeros(1,numel(B)); %// Setup output array
%// Take care of the case when all elements in B are greater than A
if sA(1) > sB(end)
C_out(:) = sum(A);
end
%// Only do further processing if there is at least one element in B > any element in A
if any(bin)
csA = cumsum(sA,'reverse'); %// Reverse cumsum on sorted A
%// Get sum(A(A>B(n))) for every n, but for sorted versions
valid_mask = cummax(bin) - bin ==0;
valid_mask2 = bin(valid_mask)+1 <= numel(A);
valid_mask(1:numel(valid_mask2)) = valid_mask2;
C_out(valid_mask) = csA(bin(valid_mask)+1);
%// Rearrange C_out to get back in original unsorted version
[~,idx] = sort(sortedB_idx);
C_out = C_out(idx);
end
Also, please remember when comparing the result from this method with the one from the original for-loop version that there would be slight variations in output as this vectorized solution uses cumsum
which computes a running summation and as such would have large cumulatively summed numbers being added to individual elements that are comparatively very small, whereas the for-loop version
would sum only selective elements. So, floating-precision issues
would come up there.
Upvotes: 5
Reputation: 658
Depending on the size of your arrays (and your memory limitations), the following code might be slightly faster:
C = A*bsxfun(@gt,A',B);
Though it's vectorized, however, it seems to be bottlenecked (perhaps) by the allocation of memory. I'm looking to see if I can get a further speedup. Depending on your input vector size, I've seen up to a factor of 2 speedup for large vectors.
Upvotes: 7
Reputation: 8459
Here's a method that is a bit quicker, but I'm sure there is a better way to solve this problem.
a=sort(A); %// If A and B are already sorted then this isn't necessary!
b=sort(B);
c(numel(B))=0; %// Initialise c
s=cumsum(a,2,'reverse'); %// Get the partial sums of a
for n=1:numel(B)
%// Pull out the sum for elements in a larger than b(n)
c(n)=s(find(a>b(n),1,'first'));
end
According to some very rough tests, this seems to run a bit better than twice as fast as the original method.
Upvotes: 6