Reputation: 77
I am trying to fit gaussian to a spectrum and the y values are on the order of 10^(-19). Curve_fit gives me poor fitting result, both before and after I multiply my whole data by 10^(-19). Attached is my code, it is fairly simple set of data except that the values are very small. If I want to keep my original values, how would I get a reasonable gaussian fit that would give me the correct parameters?
#get fits data
aaa=pyfits.getdata('p1.cal.fits')
aaa=np.matrix(aaa)
nrow=np.shape(aaa)[0]
ncol=np.shape(aaa)[1]
ylo=79
yhi=90
xlo=0
xhi=1023
glo=430
ghi=470
#sum all the rows to get spectrum
ysum=[]
for x in range(xlo,xhi):
sum=np.sum(aaa[ylo:yhi,x])
ysum.append(sum)
wavelen_pix=range(xhi-xlo)
max=np.max(ysum)
print "maximum is at x=", np.where(ysum==max)
##fit gaussian
#fit only part of my data in the chosen range [glo:ghi]
x=wavelen_pix[glo:ghi]
y=ysum[glo:ghi]
def func(x, a, x0, sigma):
return a*np.exp(-(x-x0)**2/float((2*sigma**2)))
sig=np.std(ysum[500:1000]) #std of background noise
popt, pcov = curve_fit(func, x, sig)
print popt
#this gives me [1.,1.,1.], which is obviously wrong
gaus=func(x,popt[0],popt[1],popt[2])
aaa is a 153 by 1024 image matrix, partly looks like this:
matrix([[ -8.99793629e-20, 8.57133275e-21, 4.83523386e-20, ...,
-1.54811004e-20, 5.22941515e-20, 1.71179195e-20],
[ 2.75769318e-20, 1.03177243e-20, -3.19634928e-21, ...,
1.66583803e-20, -9.88712568e-22, -2.56897725e-20],
[ 2.88121935e-20, 8.57964252e-21, -2.60784327e-20, ...,
1.72335180e-20, -7.61189937e-21, -3.45333075e-20],
...,
[ 1.04006903e-20, 1.61200683e-20, 7.04195205e-20, ...,
1.72459645e-20, 4.29404029e-20, 1.99889374e-20],
[ 3.22315752e-21, -5.61394194e-21, 3.28763096e-20, ...,
1.99063583e-20, 2.12989880e-20, -1.23250648e-21],
[ 3.66591810e-20, -8.08647455e-22, -6.22773168e-20, ...,
-4.06145681e-21, 4.92453132e-21, 4.23689309e-20]], dtype=float32)
Upvotes: 3
Views: 1234
Reputation: 9
Forget about rescaling, or making linear changes, or using the p0 parameter, which usually don't work! Try using the bounds parameter in the curve_fit for n parameters like this:
a0=np.array([a01,...,a0n])
af=np.array([af1,...,afn])
method="trf",bounds=(a0,af)
Hope it works! ;)
Upvotes: 0
Reputation: 5362
You are calling curve_fit
incorrectly, here is the usage
curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, **kw)
By default p0 is set to a list of ones [1,1,...], which is probably why you get that as a result, the fit just never executed because you called it incorrectly.
Try estimating the amplitude, center, and width from the data, then make a p0 object (see below for details)
init_guess = ( a_i, x0_i, sig_i) # same order as they are supplied to your function
popt, pcov = curve_fit(func, xdata=x,ydata=y,p0=init_guess)
Here is a short example
xdata = np.linspace(0, 4, 50)
mygauss = ( 10,2,0.5) #( amp, center, width)
y = func(xdata, *mygauss ) # using your func defined above
ydata = y + 2*(np.random.random(50)- 0.5) # add some noise to create fake data
Now I can guess the fit params
ai = np.max( ydata) # guess the amplitude
xi = xdata[ np.argmax( ydata)] # guess the position of center
Guessing the width is tricky, I would first find where the half max is located (there are two, but you only need to find one, as the Gaussian is symmetric):
pos_half = argmin( np.abs( ydata-ao/2 ) ) # subtract half the amplitude and find the minimum
Now evaluate how far this is from the center of the gaussian (xi) :
sig_i = np.abs( xi - xdata[ pos_half] ) # estimate the width
Now you can make make the initial guess
init_guess = (ai, xi sig_i)
and fit
params, variance = curve_fit( func, xdata=xdata, ydata=ydata, p0=init_guess)
print params
#array([ 9.99457443, 2.01992858, 0.49599629])
which is very close to mygauss
. Hope it helps.
Upvotes: 2