Reputation: 12341
I have twopandas
DataFrames
, where I am trying to preform an advanced join. In the following example I want to join df
and df2
based on my_key
where the date range from_dt
and to_dt
have an overlap. How can I do this using pandas?
Ex df:
value, my_key, from_dt, to_dt
1, a, 2007-01-01, 2009-02-01
2, b, 2001-01-01, 2011-01-01
3, c, 2015-01-01, 2020-01-01
df2:
my_key, value2, from_dt, to_dt
a, a1, 2007-01-01, 2008-01-01
a, a2, 2008-01-01, 2010-01-01
b, b1, 2009-01-01, 2015-01-01
c, c1, 2011-01-01, 2011-12-30
desired result:
value, value2, from_dt, to_dt
1, a1, 2007-01-01, 2008-01-01
1, a2, 2008-01-01, 2009-02-01
2, b1, 2009-01-01, 2011-01-01
Upvotes: 0
Views: 298
Reputation: 81
@Jianxun's answer is great-- note also that if your data is in CSV as the question seems to suggest, you can get pd.datetime
automatically with
df = pd.read_csv("df.csv", parse_dates=True)
You may want to check out these sections of the pandas docs.
Upvotes: 2
Reputation: 24742
This can be done in two steps. First do a outer-merge, and second keep the rows that do overlap.
import pandas as pd
# your data
# ===================================
df
value my_key from_dt to_dt
0 1 a 2007-01-01 2009-02-01
1 2 b 2001-01-01 2011-01-01
2 3 c 2015-01-01 2020-01-01
df2
my_key value2 from_dt to_dt
0 a a1 2007-01-01 2008-01-01
1 a a2 2008-01-01 2010-01-01
2 b b1 2009-01-01 2015-01-01
3 c c1 2011-01-01 2011-12-30
# processing
# ======================================
# outer merge
df_temp = pd.merge(df, df2, on=['my_key'], how='outer')
# just make sure that the columns are in proper datetime type
# you don't have to do this if your data is already in datetime
df_temp.from_dt_x = pd.to_datetime(df_temp.from_dt_x)
df_temp.to_dt_x = pd.to_datetime(df_temp.to_dt_x)
df_temp.from_dt_y = pd.to_datetime(df_temp.from_dt_y)
df_temp.to_dt_y = pd.to_datetime(df_temp.to_dt_y)
value my_key from_dt_x to_dt_x value2 from_dt_y to_dt_y
0 1 a 2007-01-01 2009-02-01 a1 2007-01-01 2008-01-01
1 1 a 2007-01-01 2009-02-01 a2 2008-01-01 2010-01-01
2 2 b 2001-01-01 2011-01-01 b1 2009-01-01 2015-01-01
3 3 c 2015-01-01 2020-01-01 c1 2011-01-01 2011-12-30
# get rows that do overlap
result = df_temp[(df_temp.to_dt_x >= df_temp.from_dt_y) & (df_temp.from_dt_x <= df_temp.to_dt_y)]
value my_key from_dt_x to_dt_x value2 from_dt_y to_dt_y
0 1 a 2007-01-01 2009-02-01 a1 2007-01-01 2008-01-01
1 1 a 2007-01-01 2009-02-01 a2 2008-01-01 2010-01-01
2 2 b 2001-01-01 2011-01-01 b1 2009-01-01 2015-01-01
result['from_dt'] = result[['from_dt_x', 'from_dt_y']].max(axis=1)
result['to_dt'] = result[['to_dt_x', 'to_dt_y']].min(axis=1)
result.drop(['from_dt_x', 'to_dt_x', 'from_dt_y', 'to_dt_y'], axis=1)
value my_key value2 from_dt to_dt
0 1 a a1 2007-01-01 2008-01-01
1 1 a a2 2008-01-01 2009-02-01
2 2 b b1 2009-01-01 2011-01-01
Upvotes: 1