Reputation: 23
I am using the python csv module and I have a CSV with 3 columns, Item, Part, Category.
I'd like to create a dict that combines all the categories and then sorts their values with the Item:Part.
For Example:
512 SSD SATA,42-000153,Hardware
5M DisplayPort 1.2 Cable,42-000135,Cable
90W AC Adapter,42-000146,Adapter
4 port USB hub,42-000126,Adapter
The result I'm getting is:
mydict = {
Hardware:{512 SSD SATA:42-000153},
Cable:{5M DisplayPort 1.2 Cable,42-000135},
Adapter:{90W AC Adapter:42-000146},
Adapter:{4 port USB hub:42-000126}
}
This almost gets me there:
def build_dict(source_file):
projects = defaultdict(dict)
headers = ['Product', 'Part Number', 'Category']
with open(source_file, 'rb') as fp:
reader = csv.DictReader(fp, fieldnames=headers, dialect='excel',
skipinitialspace=True)
for rowdict in reader:
if None in rowdict:
del rowdict[None]
category = rowdict.pop("Category")
projects[category] = rowdict
return dict(projects)
source_file = 'test.csv'
The Result I'm looking for:
mydict = {
Hardware:{512 SSD SATA:42-000153},
Cable:{5M DisplayPort 1.2 Cable,42-000135},
Adapter:{90W AC Adapter:42-000146,4 port USB hub:42-000126}
}
Please Help!
Upvotes: 1
Views: 965
Reputation: 123541
I'd leverage the use of Python's built-ins to do it:
import csv
from collections import defaultdict
mydict = defaultdict(dict)
with open('inventory.csv', 'rb') as inf:
for row in csv.DictReader(inf, fieldnames=['Product', 'Part Number',
'Category']):
mydict[row['Category']][row['Product']] = row['Part Number']
import json # for pretty-printing result
print(json.dumps(mydict, indent=4))
Output:
{
"Hardware": {
"512 SSD SATA": "42-000153"
},
"Adapter": {
"4 port USB hub": "42-000126",
"90W AC Adapter": "42-000146"
},
"Cable": {
"5M DisplayPort 1.2 Cable": "42-000135"
}
}
FWIW, you could also do it this way, which takes a few more lines of code, but would make what's going on in the inner-loop a little more readable. The result would be identical. Note it uses csv.reader
not csv.DictReader
.
import csv
from collections import defaultdict
from collections import namedtuple
Record = namedtuple('Record', ['product', 'part_number', 'category'])
mydict = defaultdict(dict)
with open('inventory.csv', 'rb') as inf:
for rec in map(Record._make, csv.reader(inf)):
mydict[rec.category][rec.product] = rec.part_number # more readable
Upvotes: 3
Reputation: 43224
Just change the defaultdict to build a list for each item and your code will work again.
def build_dict(source_file):
projects = defaultdict(list)
headers = ['Product', 'Part Number', 'Category']
with open(source_file, 'r') as fp:
reader = csv.DictReader(fp, fieldnames=headers, dialect='excel',
skipinitialspace=True)
for rowdict in reader:
if None in rowdict:
del rowdict[None]
continue
category = rowdict.pop("Category")
projects[category].append(rowdict)
return dict(projects)
source_file = 'test.csv'
Output:
{'Cable': [{'Part Number': '42-000135', 'Product': '5M DisplayPort 1.2 Cable'}], 'Adapter': [{'Part Number': '42-000146', 'Product': '90W AC Adapter'}, {'Part Number': '42-000126', 'Product': '4 port USB hub'}], 'Hardware': [{'Part Number': '42-000153', 'Product': '512 SSD SATA'}]}
Using json pretty print (thanks martineau)
{
"Cable": [
{
"Part Number": "42-000135",
"Product": "5M DisplayPort 1.2 Cable"
}
],
"Adapter": [
{
"Part Number": "42-000146",
"Product": "90W AC Adapter"
},
{
"Part Number": "42-000126",
"Product": "4 port USB hub"
}
],
"Hardware": [
{
"Part Number": "42-000153",
"Product": "512 SSD SATA"
}
]
}
Upvotes: 0
Reputation: 2965
This may work.
import csv
import sys
f = open(sys.argv[1], 'rt')
ret = {}
try:
reader = csv.reader(f)
for row in reader:
ret[row[-1]]={" ".join(row[0:2]):row[-2]}
finally:
f.close()
print str(ret)
Upvotes: 0