Reputation: 2777
I have a pandas DataFrame, with many NAN
values in it.
How can I drop columns such that number_of_na_values > 2000
?
I tried to do it like that:
toRemove = set()
naNumbersPerColumn = df.isnull().sum()
for i in naNumbersPerColumn.index:
if(naNumbersPerColumn[i]>2000):
toRemove.add(i)
for i in toRemove:
df.drop(i, axis=1, inplace=True)
Is there a more elegant way to do it?
Upvotes: 23
Views: 78487
Reputation: 1546
For me, I didn't seem to need set_index:
df = (df.T
.loc[lambda x: ((x['label'] > .05) | (x['label'] < -.05))]
.T.reset_index().set_index('index'))
Upvotes: 0
Reputation: 10006
Here's another alternative to keep the columns that have less than or equal to the specified number of nans in each column:
max_number_of_nas = 3000
df = df.loc[:, (df.isnull().sum(axis=0) <= max_number_of_nas)]
In my tests this seems to be slightly faster than the drop columns method suggested by Jianxun Li in the cases I tested (as shown below). However, I should note that the performance becomes more similar if you simply don't use the apply method (e.g. df.drop(df.columns[df.isnull().sum(axis=0) > max_number_of_nans], axis=1)
). Just a reminder that when it comes to performance in pandas vectorization almost always wins out over apply.
np.random.seed(0)
df = pd.DataFrame(np.random.randn(10000,5), columns=list('ABCDE'))
df[df < 0] = np.nan
max_number_of_nans = 5010
%timeit c = df.loc[:, (df.isnull().sum(axis=0) <= max_number_of_nans)]
>> 1.1 ms ± 4.08 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit c = df.drop(df.columns[df.isnull().sum(axis=0) > max_number_of_nans], axis=1)
>> 1.3 ms ± 11.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit c = df.drop(df.columns[df.apply(lambda col: col.isnull().sum() > max_number_of_nans)], axis=1)
>> 2.11 ms ± 29.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Performance often varies with data size so don't forget to check whatever case is closest to your data.
np.random.seed(0)
df = pd.DataFrame(np.random.randn(10, 5), columns=list('ABCDE'))
df[df < 0] = np.nan
max_number_of_nans = 5
%timeit c = df.loc[:, (df.isnull().sum(axis=0) <= max_number_of_nans)]
>> 755 µs ± 4.84 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit c = df.drop(df.columns[df.isnull().sum(axis=0) > max_number_of_nans], axis=1)
>> 777 µs ± 12 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit c = df.drop(df.columns[df.apply(lambda col: col.isnull().sum() > max_number_of_nans)], axis=1)
>> 1.71 ms ± 17.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Upvotes: 24
Reputation: 24742
Same logic, but just put all things in one line.
import pandas as pd
import numpy as np
# artificial data
# ====================================
np.random.seed(0)
df = pd.DataFrame(np.random.randn(10,5), columns=list('ABCDE'))
df[df < 0] = np.nan
A B C D E
0 1.7641 0.4002 0.9787 2.2409 1.8676
1 NaN 0.9501 NaN NaN 0.4106
2 0.1440 1.4543 0.7610 0.1217 0.4439
3 0.3337 1.4941 NaN 0.3131 NaN
4 NaN 0.6536 0.8644 NaN 2.2698
5 NaN 0.0458 NaN 1.5328 1.4694
6 0.1549 0.3782 NaN NaN NaN
7 0.1563 1.2303 1.2024 NaN NaN
8 NaN NaN NaN 1.9508 NaN
9 NaN NaN 0.7775 NaN NaN
# processing: drop columns with no. of NaN > 3
# ====================================
df.drop(df.columns[df.apply(lambda col: col.isnull().sum() > 3)], axis=1)
Out[183]:
B
0 0.4002
1 0.9501
2 1.4543
3 1.4941
4 0.6536
5 0.0458
6 0.3782
7 1.2303
8 NaN
9 NaN
Upvotes: 8