Reputation: 135
for i = 1 : numel(T);
j = 1 : numel(T(i).n);
P(i,j) = (T(i).n);
G(i) = (T(i).lastPulse)-1100;
Y = P(1,G(1):length(T(1).n));
S = P(2,G(2):length(T(2).n));
end
I have the preceeding code. P is a (191x10000) matrix. I want to take out a specific portion of each row as I showed in S and Y and then concatenate S and Y and other row matrices corresponding to other rows of P to create matrix A(191x[max length of (S,Y,...)]). BUT the tricky part is that I cannot make S and Y aligned.
EXAMPLE:
P = [1 2 1 3 1 1 1 0 3 1 0]
[3 0 2 0 1 1 4 1 1 2 0];
S = P(1,1:7) = [1 2 1 3 1 1 1];
Y = P(2,5:10) = [1 1 4 1 1 2];
% A = concatenated S and Y aligned to original P.
A = [ 1 2 1 3 1 1 1 nan nan nan nan]
[nan nan nan nan 1 1 4 1 1 2 nan];
Preferably I would like to use a loop instead of separated matrices such as S and Y since I have many rows.
Suggested Answer:
I have the idea that probably I have to use indices corresponding to P and use them to concatenate Y and S, I just don't know how to execute this thought especially in a loop.
Upvotes: 0
Views: 74
Reputation: 221514
If I got the question correctly in my head, it seems bsxfun
could be used here for creating a mask and then keep the masked elements from P
and thus have an aligned output. Here's an implementation to go along those lines -
%// Random input array
P = randi(9,5,11)
%// Define the start and stop(end) indices as vectors
start_idx = [1 5 3 4 11]
stop_idx = [7 10 3 6 11]
%// Get the size of P and initialize output array
[M,N] = size(P);
P_out = NaN(M,N);
%// Create the mask for extracting specific elements from P
mask = bsxfun(@le,start_idx(:),1:N) & bsxfun(@ge,stop_idx(:),1:N);
%// Put masked elements from P into output array
P_out(mask) = P(mask)
Another way to get the output without initializing it, would be like this -
P_out = P.*mask;
P_out(~mask) = NaN;
So, to correlate with the variables used in the question, start_idx
would be G
and stop_idx
would be [length(T(1).n),length(T(2).n).length(T(3).n),...]
.
Sample run -
P =
1 6 8 8 8 1 9 1 2 4 2
8 8 6 3 7 6 7 2 5 1 2
6 8 9 5 6 6 6 8 6 5 2
9 9 5 9 3 7 9 5 1 2 1
7 1 5 6 6 9 6 8 6 2 6
start_idx =
1 5 3 4 11
stop_idx =
7 10 3 6 11
P_out =
1 6 8 8 8 1 9 NaN NaN NaN NaN
NaN NaN NaN NaN 7 6 7 2 5 1 NaN
NaN NaN 9 NaN NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN 9 3 7 NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 6
Upvotes: 1