ali
ali

Reputation: 21

Find out if a location is within a shape drawn with polygon on Google Maps v2

If I draw a shape with polygon on Google Maps v2, is there a way to find out if my current location is inside the shape? please write me a clear code thanks

Upvotes: 1

Views: 7070

Answers (5)

許雅婷
許雅婷

Reputation: 164

I split the PolyUtil from the Google Maps Android API Utility Library to one class. Than just call like follow.

 ArrayList<LatLng> polygon = new ArrayList<LatLng>();
 LatLng myLocation = new LatLng(currentLocation.getLatitude(), currentLocation.getLongitude());
 boolean inPolygon = PolyUtil.containsLocation(myLocation, polygon, false);

And include the PolyUtil class in your code.


import static java.lang.Math.PI;
import static java.lang.Math.log;
import static java.lang.Math.sin;
import static java.lang.Math.tan;
import static java.lang.Math.toRadians;

public class PolyUtil {
    /**
     * Returns tan(latitude-at-lng3) on the great circle (lat1, lng1) to (lat2, lng2). lng1==0.
     * See http://williams.best.vwh.net/avform.htm .
     */
    private static double tanLatGC(double lat1, double lat2, double lng2, double lng3) {
        return (tan(lat1) * sin(lng2 - lng3) + tan(lat2) * sin(lng3)) / sin(lng2);
    }
    /**
     * Wraps the given value into the inclusive-exclusive interval between min and max.
     * @param n   The value to wrap.
     * @param min The minimum.
     * @param max The maximum.
     */
    static double wrap(double n, double min, double max) {
        return (n >= min && n < max) ? n : (mod(n - min, max - min) + min);
    }
    /**
     * Returns the non-negative remainder of x / m.
     * @param x The operand.
     * @param m The modulus.
     */
    static double mod(double x, double m) {
        return ((x % m) + m) % m;
    }
    /**
     * Returns mercator Y corresponding to latitude.
     * See http://en.wikipedia.org/wiki/Mercator_projection .
     */
    static double mercator(double lat) {
        return log(tan(lat * 0.5 + PI/4));
    }
    /**
     * Returns mercator(latitude-at-lng3) on the Rhumb line (lat1, lng1) to (lat2, lng2). lng1==0.
     */
    private static double mercatorLatRhumb(double lat1, double lat2, double lng2, double lng3) {
        return (mercator(lat1) * (lng2 - lng3) + mercator(lat2) * lng3) / lng2;
    }

    public static boolean containsLocation(LatLng point, List<LatLng> polygon, boolean geodesic) {
        return containsLocation(point.latitude, point.longitude, polygon, geodesic);
    }

    /**
     * Computes whether the given point lies inside the specified polygon.
     * The polygon is always considered closed, regardless of whether the last point equals
     * the first or not.
     * Inside is defined as not containing the South Pole -- the South Pole is always outside.
     * The polygon is formed of great circle segments if geodesic is true, and of rhumb
     * (loxodromic) segments otherwise.
     */
    public static boolean containsLocation(double latitude, double longitude, List<LatLng> polygon, boolean geodesic) {
        final int size = polygon.size();
        if (size == 0) {
            return false;
        }
        double lat3 = toRadians(latitude);
        double lng3 = toRadians(longitude);
        LatLng prev = polygon.get(size - 1);
        double lat1 = toRadians(prev.latitude);
        double lng1 = toRadians(prev.longitude);
        int nIntersect = 0;
        for (LatLng point2 : polygon) {
            double dLng3 = wrap(lng3 - lng1, -PI, PI);
            // Special case: point equal to vertex is inside.
            if (lat3 == lat1 && dLng3 == 0) {
                return true;
            }
            double lat2 = toRadians(point2.latitude);
            double lng2 = toRadians(point2.longitude);
            // Offset longitudes by -lng1.
            if (intersects(lat1, lat2, wrap(lng2 - lng1, -PI, PI), lat3, dLng3, geodesic)) {
                ++nIntersect;
            }
            lat1 = lat2;
            lng1 = lng2;
        }
        return (nIntersect & 1) != 0;
    }
    /**
     * Computes whether the vertical segment (lat3, lng3) to South Pole intersects the segment
     * (lat1, lng1) to (lat2, lng2).
     * Longitudes are offset by -lng1; the implicit lng1 becomes 0.
     */
    private static boolean intersects(double lat1, double lat2, double lng2,
                                      double lat3, double lng3, boolean geodesic) {
        // Both ends on the same side of lng3.
        if ((lng3 >= 0 && lng3 >= lng2) || (lng3 < 0 && lng3 < lng2)) {
            return false;
        }
        // Point is South Pole.
        if (lat3 <= -PI/2) {
            return false;
        }
        // Any segment end is a pole.
        if (lat1 <= -PI/2 || lat2 <= -PI/2 || lat1 >= PI/2 || lat2 >= PI/2) {
            return false;
        }
        if (lng2 <= -PI) {
            return false;
        }
        double linearLat = (lat1 * (lng2 - lng3) + lat2 * lng3) / lng2;
        // Northern hemisphere and point under lat-lng line.
        if (lat1 >= 0 && lat2 >= 0 && lat3 < linearLat) {
            return false;
        }
        // Southern hemisphere and point above lat-lng line.
        if (lat1 <= 0 && lat2 <= 0 && lat3 >= linearLat) {
            return true;
        }
        // North Pole.
        if (lat3 >= PI/2) {
            return true;
        }
        // Compare lat3 with latitude on the GC/Rhumb segment corresponding to lng3.
        // Compare through a strictly-increasing function (tan() or mercator()) as convenient.
        return geodesic ?
                tan(lat3) >= tanLatGC(lat1, lat2, lng2, lng3) :
                mercator(lat3) >= mercatorLatRhumb(lat1, lat2, lng2, lng3);
    }
}

Upvotes: 2

Pradip Sutariya
Pradip Sutariya

Reputation: 287

Just tried Ray Casting algorithm which identifies point in polygon. This works perfect.

private boolean isPointInPolygon(LatLng tap, ArrayList<LatLng> vertices) {
        int intersectCount = 0;
        for (int j = 0; j < vertices.size() - 1; j++) {
            if (rayCastIntersect(tap, vertices.get(j), vertices.get(j + 1))) {
                intersectCount++;
            }
        }

        return ((intersectCount % 2) == 1); // odd = inside, even = outside;
    }

    private boolean rayCastIntersect(LatLng tap, LatLng vertA, LatLng vertB) {

        double aY = vertA.latitude;
        double bY = vertB.latitude;
        double aX = vertA.longitude;
        double bX = vertB.longitude;
        double pY = tap.latitude;
        double pX = tap.longitude;

        if ((aY > pY && bY > pY) || (aY < pY && bY < pY)
                || (aX < pX && bX < pX)) {
            return false; // a and b can't both be above or below pt.y, and a or
                            // b must be east of pt.x
        }

        double m = (aY - bY) / (aX - bX); // Rise over run
        double bee = (-aX) * m + aY; // y = mx + b
        double x = (pY - bee) / m; // algebra is neat!

        return x > pX;
    }

Upvotes: -1

You could create a LatLngBounds based on the specifications of your rectangle and then use the contains method to check whether the current location resides within it.

Upvotes: 2

Aryan Najafi
Aryan Najafi

Reputation: 2506

  1. Draw a rectangle on map with points:

    List<LatLng> points = new ArrayList<>();
    points.add(new LatLng(lat1, lng1));
    points.add(new LatLng(lat2, lng2));
    points.add(new LatLng(lat3, lng3));
    points.add(new LatLng(lat4, lng4));
    
    Polygon polygon = myMap.addPolygon(new PolygonOptions().addAll(points));
    
  2. Use android-maps-utils library to check to see is polygon contains your current location point:

    boolean contain = PolyUtil.containsLocation(currentLocationLatLng, points, true);
    

Upvotes: 12

Related Questions