Reputation: 23898
I want to draw random sample from each row of a data.frame
independently from other rows. Here is an example. This code selects the same column for each row but I require independent selection of columns for each row.
library(plyr)
set.seed(12345)
df1 <- mdply(data.frame(mean=c(10, 15)), rnorm, n = 5, sd = 1)
df1
mean V1 V2 V3 V4 V5
1 10 10.58553 10.70947 9.890697 9.546503 10.60589
2 15 13.18204 15.63010 14.723816 14.715840 14.08068
> df1[ , -1]
V1 V2 V3 V4 V5
1 10.58553 10.70947 9.890697 9.546503 10.60589
2 13.18204 15.63010 14.723816 14.715840 14.08068
> sample(df1[, -1], replace = TRUE)
V3 V2 V5 V4 V4.1
1 9.890697 10.70947 10.60589 9.546503 9.546503
2 14.723816 15.63010 14.08068 14.715840 14.715840
> t(apply(df1[, -1], 1, sample))
[,1] [,2] [,3] [,4] [,5]
[1,] 10.70947 9.890697 10.60589 10.58553 9.546503
[2,] 14.71584 13.182044 14.08068 15.63010 14.723816
Edited
df1[ , -1]
V1 V2 V3 V4 V5
1 10.58553 10.70947 9.890697 9.546503 10.60589
2 13.18204 15.63010 14.723816 14.715840 14.08068
sample(df1[, -1], replace = TRUE)
V3 V2 V5 V4 V4.1
1 9.890697 10.70947 10.60589 9.546503 9.546503
2 14.723816 15.63010 14.08068 14.715840 14.715840
sample(df1[, -1], replace = TRUE)
selects the columns V3
, V2
, V5
, V4
, and V4
for both rows. But I require that it could select columns V3
, V2
, V5
, V4
, and V4
for first row
and/or any combinations of five columns for second row
.
Upvotes: 3
Views: 1954
Reputation: 19454
You could sample the column indices all at once and then use matrix subsetting to avoid having to use apply
:
## Determine how many indices are required (nrow x (ncol - 1))
nsamp <- prod(dim(df1[, -1]))
## Sample from the number of desired columns, here 5 = ncol(df1[, -1])
mySamp <- sample.int(5, nsamp, replace = TRUE)
## Create a matrix of row and column indices
## Have to add 1 to mySamp to ignore first column of df1
myIdx <- cbind(rep(seq_len(nrow(df1)), ncol(df1) - 1), mySamp + 1)
## Return the corresponding values
matrix(df1[myIdx], nrow = nrow(df1))
# [,1] [,2] [,3] [,4] [,5]
# [1,] 9.890697 10.60589 9.546503 9.546503 10.70947
# [2,] 15.630099 14.71584 15.630099 14.723816 14.72382
Upvotes: 2
Reputation: 886938
You could use apply
with replace=TRUE
for the sample
t(apply(df1[,-1], 1, sample, replace=TRUE))
Upvotes: 3