Reputation: 3128
I am working with OpenCV 3.0 for Android. I have an image in which i want to detect angle of hands inside circular dials. for that i am working on HoughLinesP
to detect hands.
Here is the code.
Mat imgSource = new Mat(), imgCirclesOut = new Mat(),imgLinesOut=new Mat();
//grey opencv
Imgproc.cvtColor(Image, imgSource, Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur( imgSource, imgSource, new Size(9, 9), 2, 2 );
int threshold = 0;
int minLineSize = 0;
int lineGap = 0;
Imgproc.HoughLinesP(imgSource, imgLinesOut, 1, Math.PI/180, threshold, minLineSize, lineGap);
for( int j = 0; i < imgLinesOut.cols(); i++ )
{
double[] vec=imgLinesOut.get(0,j);
Point pt1, pt2;
pt1=new Point(vec[0],vec[1]);
pt2=new Point(vec[2],vec[3]);
Imgproc.line( Image, pt1, pt2, new Scalar(0,0,255), 3, Core.LINE_AA,0);
}
What i need is the angle of hands in these circles. Any help regarding this issue is highly appreciated. Thanks in ADvance
Edit I have updated my code with this
Mat imgSource = new Mat(), imgCirclesOut = new Mat(),imgLinesOut=new Mat();
Imgproc.GaussianBlur( Image, imgSource, new Size(5, 5), 2, 2 );
int threshold = 20;
int minLineSize = 0;
int lineGap = 10;
Imgproc.Canny(imgSource, imgSource, 70, 100);
Imgproc.HoughLinesP(imgSource, imgLinesOut, 1, Math.PI/180, threshold, minLineSize, lineGap);
for( int j = 0; j < imgLinesOut.cols(); j++ )
{
double[] vec=imgLinesOut.get(0,j);
Point pt1, pt2;
pt1=new Point(vec[0],vec[1]);
pt2=new Point(vec[2],vec[3]);
Imgproc.line( imgSource, pt1, pt2, new Scalar(0,0,255), 3, Core.LINE_AA,0);
}
as suggested by @Micka, there is no need of Graying image(I removed cvtcolor
). I also decreased value of GuassianBlur
Size to 5
. I have added Canny on image too for edges.
Resulting blur image is
Upvotes: 2
Views: 1972
Reputation: 41765
Detecting lines can be a problem in such small images, since you have to few points to fill the Hough accumulator properly.
I propose to use a different approach:
Below is a simple implementation of this idea. The code is in C++, but you can easily port to Java, or at least use as a reference.
#include "opencv2/opencv.hpp"
using namespace cv;
int main(int, char**)
{
Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
Mat3b res;
cvtColor(img, res, COLOR_GRAY2BGR);
// Find dials
vector<Vec3f> circles;
HoughCircles(img, circles, CV_HOUGH_GRADIENT, 1, img.cols/10, 400, 40);
// For each dial
for (int i = 0; i < circles.size(); ++i)
{
// Segment the dial
Mat1b dial(img.size(), uchar(255));
Mat1b mask(img.size(), uchar(0));
circle(mask, Point(circles[i][0], circles[i][1]), circles[i][2], Scalar(255), CV_FILLED);
img.copyTo(dial, mask);
// Apply threshold and open
Mat1b bin;
threshold(dial, bin, 127, 255, THRESH_BINARY_INV);
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5,5));
morphologyEx(bin, bin, MORPH_OPEN, kernel);
// Get min area rect
vector<Point> points;
findNonZero(bin, points);
RotatedRect r = minAreaRect(points);
// Draw min area rect
Point2f pts[4];
r.points(pts);
for (int j = 0; j < 4; ++j) {
line(res, pts[j], pts[(j + 1) % 4], Scalar(0, 255, 0), 1);
}
}
imshow("Result", res);
waitKey();
return 0;
}
Starting from this image:
I find hands here:
Upvotes: 3
Reputation: 55
for( int j = 0; j < imgLinesOut.size(); j++ )
This will give the size of the vector.To iterate through that vector
Upvotes: -1