Reputation: 13116
I have a data frame with hierarchical column indices. Now I want to group it by a column ['X', 'chromosome']
. Is there a way to do it without changing the structure of the data frame?
import pandas as pd
X = pd.DataFrame.from_dict( {'chromosome':['chr1', 'chr2', 'chr2', 'chr2'],'start':[1,2,1,4]})
Y = pd.DataFrame.from_dict( {'chromosome':['chr1', 'chr2', 'chr2', 'chr3'],'start':[4,5,6,1]})
df_stats = pd.DataFrame.from_dict( {'pvalue':[ 1e-30, 1e-3, 1e-10, 1e-40],'t-stat':[4.4,5.5,6.6, 7.7]})
dd = {'X': X, 'Y': Y, 'STATS':df_stats}
df_qtls = pd.concat(dd.values(), axis = 1, keys= list(dd.keys()) )
df_qtls
for n, g in df_qtls.groupby(['X', 'chromosome'], axis=0):
print(n, g)
Results in an error:
...
ValueError: Grouper for 'X' not 1-dimensional
Upvotes: 3
Views: 4514
Reputation: 13116
Another way I found is:
for n, g in df_qtls.groupby(df_qtls[x_pos_cols, 'chromosome'], axis=0):
print(n)
print(g)
Upvotes: 0
Reputation: 24752
For multi-level columns, use ('X', 'chromosome')
to get access to a particular column.
for n, g in df_qtls.groupby([('X', 'chromosome')]):
print(n)
print(g)
chr1
Y X STATS
chromosome start chromosome start pvalue t-stat
0 chr1 4 chr1 1 1.0000e-30 4.4
chr2
Y X STATS
chromosome start chromosome start pvalue t-stat
1 chr2 5 chr2 2 1.0000e-03 5.5
2 chr2 6 chr2 1 1.0000e-10 6.6
3 chr3 1 chr2 4 1.0000e-40 7.7
Upvotes: 6