Reputation: 243
I imputed data using MICE and ran a Cox Model using survival.
Output is:
> est se t df Pr(>|t|)
factor(ss748)Varian 0.78109445 0.1399757 5.5802158 254.8814 6.130658e-08
factor(ss749)Variant 0.43698935 0.2145538 2.0367359 213.579 4.291038e-02
factor(ss750)Variant 0.07076991 0.1757233 0.4027350 123.730 6.878381e-01
factor(ss751)Variant 0.09796057 0.1304451 0.7509714 4560.5547 4.52786e-01
> lo 95 hi 95 nmis fmi lambda
factor(ss748)Variant 0.50543827 1.0567506 NA 0.13203983 0.12525575
factor(ss749)Variant 0.01407524 0.8599035 NA 0.14480694 0.136835
factor(ss750)Variant -0.27704297 0.4185828 NA 0.19272691 0.17978321
factor(ss751)Variant -0.15777509 0.3536962 NA 0.02997128 0.02954597
I understand that the SE relates to the est, so I know to get the CI for the estimates I would do:
(est - 1.96 X se, est + 1.96 x se).
(which is what the lo 95 and hi 95 columns are). what specific calculation can I do to get the CI for the HR (which is exp(est))?
Can i just do:
(exp(est) -1.96 X se, exp(est) + 1.96 X se)
to get CI for HR instead of est?
More plainly, if I wanted to use this table to publish the result (HR=X, 95% CI=X, P Val=X), how do I go about it from the table above?
Thanks
Upvotes: 0
Views: 3088
Reputation: 226097
To get the CI for the hazard ratio you should exponentiate the limits, not the base value, i.e.
exp(c(est - 1.96*se, est + 1.96* se))
or
exp(est+c(-1.96,1.96)*se)
(for a single CI; if est
and se
are vectors then the latter approach will not work)
For the output table, something like:
with(output,
data.frame(HR=exp(est),lwr=exp(est-1.96*se),upr=exp(est+1.96*se),
pval=`Pr(>|t|)`))
(I'm not 100% sure what you want.) Note these are Normal (not Student-t-based) confidence intervals, but with df>100 it will make only a very tiny difference.
Upvotes: 2