Reputation: 2886
My goal is to merge two DataFrames by their common column (gene names) so I can take a product of each gene score across each gene row. I'd then perform a groupby
on patients and cells and sum all scores from each. The ultimate data frame should look like this:
patient cell
Pat_1 22RV1 12
DU145 15
LN18 9
Pat_2 22RV1 12
DU145 15
LN18 9
Pat_3 22RV1 12
DU145 15
LN18 9
That last part should work fine, but I have not been able to perform the first merge on gene names due to a MemoryError
. Below are snippets of each DataFrame.
cell_s =
Description Name level_2 0
0 LOC100009676 100009676_at LN18_CENTRAL_NERVOUS_SYSTEM 1
1 LOC100009676 100009676_at 22RV1_PROSTATE 2
2 LOC100009676 100009676_at DU145_PROSTATE 3
3 AKT3 10000_at LN18_CENTRAL_NERVOUS_SYSTEM 4
4 AKT3 10000_at 22RV1_PROSTATE 5
5 AKT3 10000_at DU145_PROSTATE 6
6 MED6 10001_at LN18_CENTRAL_NERVOUS_SYSTEM 7
7 MED6 10001_at 22RV1_PROSTATE 8
8 MED6 10001_at DU145_PROSTATE 9
cell_s is about 10,000,000 rows
patient_s =
id level_1 0
0 MED6 Pat_1 1
1 MED6 Pat_2 1
2 MED6 Pat_3 1
3 LOC100009676 Pat_1 2
4 LOC100009676 Pat_2 2
5 LOC100009676 Pat_3 2
6 ABCD Pat_1 3
7 ABCD Pat_2 3
8 ABCD Pat_3 3
....
patient_s is about 1,200,000 rows
def get_score(cell, patient):
cell_s = cell.set_index(['Description', 'Name']).stack().reset_index()
cell_s.columns = ['Description', 'Name', 'cell', 's1']
patient_s = patient.set_index('id').stack().reset_index()
patient_s.columns = ['id', 'patient', 's2']
# fails here:
merged = cell_s.merge(patient_s, left_on='Description', right_on='id')
merged['score'] = merged.s1 * merged.s2
scores = merged.groupby(['patient','cell'])['score'].sum()
return scores
I was getting a MemoryError when initially read_csv
ing these files, but then specifying the dtypes resolved the issue. Confirming that my python is 64 bit did not fix my issue either. I haven't reached the limitations on pandas, have I?
Python 3.4.3 |Anaconda 2.3.0 (64-bit)| Pandas 0.16.2
Upvotes: 8
Views: 15864
Reputation: 107567
Consider two workarounds:
CSV By CHUNKS
Apparently, read_csv can suffer performance issues and therefore large files must load in iterated chunks.
cellsfilepath = 'C:\\Path\To\Cells\CSVFile.csv'
tp = pd.io.parsers.read_csv(cellsfilepath, sep=',', iterator=True, chunksize=1000)
cell_s = pd.concat(tp, ignore_index=True)
patientsfilepath = 'C:\\Path\To\Patients\CSVFile.csv'
tp = pd.io.parsers.read_csv(patientsfilepath, sep=',', iterator=True, chunksize=1000)
patient_s = pd.concat(tp, ignore_index=True)
CSV VIA SQL
As a database guy, I always recommend handling large data loads and merging/joining with a SQL relational engine that scales well for such processes. I have written many a comment on dataframe merge Q/As to this effect -even in R. You can use any SQL database including file server dbs (Access, SQLite) or client server dbs (MySQL, MSSQL, or other), even where your dfs derive. Python maintains a built-in library for SQLite (otherwise you use ODBC); and dataframes can be pushed into databases as tables using pandas to_sql:
import sqlite3
dbfile = 'C:\\Path\To\SQlitedb.sqlite'
cxn = sqlite3.connect(dbfile)
c = cxn.cursor()
cells_s.to_sql(name='cell_s', con = cxn, if_exists='replace')
patient_s.to_sql(name='patient_s', con = cxn, if_exists='replace')
strSQL = 'SELECT * FROM cell_s c INNER JOIN patient_s p ON c.Description = p.id;'
# MIGHT HAVE TO ADJUST ABOVE FOR CELL AND PATIENT PARAMS IN DEFINED FUNCTION
merged = pd.read_sql(strSQL, cxn)
Upvotes: 6
Reputation: 2552
You may have to do it in pieces, or look into blaze. http://blaze.pydata.org
Upvotes: 1