Reputation: 303
Scenario
List of vehicles available with following properties:
vehicle1 {passengers: 4, luggages: 2, suitcases: 8}
vehicle2 {passengers: 5, luggages: 3, suitcases: 10}
vehicle3 {passengers: 6, luggages: 3, suitcases: 10}
vehicle4 {passengers: 8, luggages: 4, suitcases: 10}
Now if, the user demands for a journey with (13 passengers, 6 luggage, 15 suitcases), then the best efficient vehicle result will be:
vehicle2 + vehicle4
Problem Definition: I've been able to develop a flow/algorithm upto this (but only with passengers count), but when the passengers/suitcase/luggage quantity exceeds with a demand of 3 vehicles or more I'm not being able to develop the algorithm for it.
Code:
function ajax_getVehicles() {
$vehicleType = $_POST['vehicle_type'];
$passengers = intval($_POST['passengers']);
$luggage = intval($_POST['luggage']);
$suitcases = intval($_POST['suitcases']);
$requiredVehicles = array();
// 1. Check if all passengers fit in a single car
if (!$requiredVehicles) {
$vehicle = $this->common_model->get_where('fleets', array('vehicle_type' => $vehicleType, 'passengers >=' => $passengers), 'passengers ASC');
if ($vehicle)
array_push($requiredVehicles, $vehicle[0]);
}
// 2. Try sending duplicate vehicles
$vehicles = $this->common_model->get_where('fleets', array('vehicle_type' => $vehicleType), 'passengers ASC');
if (!$requiredVehicles) {
foreach ($vehicles as $v) {
if ($v['passengers'] * 2 == $passengers) {
array_push($requiredVehicles, $v, $v);
}
}
}
// 3. Find best possible solution
if (!$requiredVehicles) {
$totalPermutation = gmp_fact(count($vehicles)) / (gmp_fact(count($vehicles) - 2) * gmp_fact(2));
$total_pax_array = array();
for ($i = 0; $i < $totalPermutation; $i++) {
for ($count = $i + 1; $count < count($vehicles); $count++) {
$total_pax = $vehicles[$i]['passengers'] + $vehicles[$count]['passengers'];
if ($total_pax >= $passengers) {
if (count($total_pax_array) < 1) {
$requiredVehicles = array($vehicles[$i], $vehicles[$count]);
} else if ($total_pax < min($total_pax_array)) {
$requiredVehicles = array($vehicles[$i], $vehicles[$count]);
}
array_push($total_pax_array, $total_pax);
}
}
}
}
// 4. check if requirement can be acheived by sending duplicate vehicles
if (!$requiredVehicles) {
foreach ($vehicles as $v) {
if ($v['passengers'] * 2 > $passengers) {
array_push($requiredVehicles, $v, $v);
}
}
}
if (!$requiredVehicles)
jsonOutput('ERROR', 'call for 3 vehicles required.');
else
jsonOutput('SUCCESS', 'criteria matching vehicles', $requiredVehicles);
}
Upvotes: 0
Views: 138
Reputation: 178461
This can be solved using Dynamic Programming (DP) by following the recursive formula:
D(p,l,s,0) = infinity if p>0 or l>0 or s>0
0 otherwise
D(p,l,s,i) = min { D(p,l,s,i-1), D(p-cars[i].passangers, l-cars[i].luggage, s-cars[i].suitcases) + 1}
The idea is D(p,l,s,i) represents the minimal number of cars between the cars 1,2,3...,i - that can take p
passengers, l
luggages and s
suitcases.
Time complexity (if applying DP techniques): O(n*p*l*s)
, where n
is the number of available cars, p
required number of passengers, l
- required number of luggages, and s
- required number of suitcases.
An alternative solution is to generate all subsets of cars, for each subset check if it's a feasible solution, and chose the minimal size subset out of the feasible solutions. Time complexity: O(2^n)
Upvotes: 4