Reputation: 6486
This question is similar to this, but it's got a C# answer, and I need a R answer.
I have some 50 files of about 650 rows with a format and data very similar to this toy data:
dput(y)
structure(list(level1 = c(4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L), level2 = c(NA, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
42L, 42L, 42L, 42L), level3 = c(NA, NA, 4120L, 4120L, 4120L,
4120L, 4120L, 4120L, NA, 4210L, 4210L, 4210L), level4 = c(NA,
NA, NA, 412030L, 412030L, 412050L, 412050L, 412050L, NA, NA,
421005L, 421005L), pid = c(NA, NA, NA, NA, 123456L, NA, 789012L,
345678L, NA, NA, NA, 901234L), description = c("income", "op.income",
"manuf.industries", "manuf 1", "client 1", "manuf 2", "client 2",
"client 3", "non-op.income", "financial", "interest", "bank 1"
), value = c(NA, NA, NA, NA, 15000L, NA, 272860L, 1150000L, NA,
NA, NA, 378L)), .Names = c("level1", "level2", "level3", "level4",
"pid", "description", "value"), class = c("data.table", "data.frame"
), row.names = c(NA, -12L), .internal.selfref = <pointer: 0x00000000001a0788>)
Each of the rows that have a value on value
are a "leaf" o a tree, with branches identified in columns level
1 to 4. I want to summarize the leafs by brach and put the corresponding values in the value
column.
My expected output looks like this:
dput(res)
structure(list(level1 = c(4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L), level2 = c(NA, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
42L, 42L, 42L, 42L), level3 = c(NA, NA, 4120L, 4120L, 4120L,
4120L, 4120L, 4120L, NA, 4210L, 4210L, 4210L), level4 = c(NA,
NA, NA, 412030L, 412030L, 412050L, 412050L, 412050L, NA, NA,
421005L, 421005L), pid = c(NA, NA, NA, NA, 123456L, NA, 789012L,
345678L, NA, NA, NA, 901234L), description = c("income", "op.income",
"manuf.industries", "manuf 1", "client 1", "manuf 2", "client 2",
"client 3", "non-op.income", "financial", "interest", "bank 1"
), value = c(1438238L, 1437860L, 1437860L, 15000L, 15000L, 1422860L,
272860L, 1150000L, 378L, 378L, 378L, 378L)), .Names = c("level1",
"level2", "level3", "level4", "pid", "description", "value"), class = c("data.table",
"data.frame"), row.names = c(NA, -12L), .internal.selfref = <pointer: 0x00000000001a0788>)
I know this can be done with a for-loop, but I wanted to know if there is any faster, simpler alternative (I prefer data.table
or base-solutions, but any other package works ok too). What I've tried so far:
z4<-y[!is.na(pid),sum(value),by=level4]
setkey(y,"level4");setkey(z4,"level4")
y[z4,][is.na(pid)]
This shows me the desired values in V1
, so I wanted to see if I could assign them to value
:
y[z4,][is.na(pid),value:=i.V1]
Error in eval(expr, envir, enclos) : object 'i.V1' not found
I think this could be caused because the call i.V1
is in the chained [
and not in the initial y[z4
call. But if I only subset on z4
, how can I know which of the several matching level4
rows I should assign (that's why I'm thinking of using is.na(pid)
, because y[z4,value:=i.V1]
produces the wrong result, as it updates all values that match level4
).
As you can see, I'm badly stuck at this problem, and with "my method" I still would have 3 more levels to go.
Is there any easier way to do this?
Upvotes: 2
Views: 235
Reputation: 32416
Because the computations at each level require those from the previous level, I think a loop or recursion is required. Here is a recursive function to get the values using base R. You could surely do something similar with data.table
, which would probably be much more efficient.
## Use y as data.frame
y <- as.data.frame(y)
## Recursive function to get values
f <- function(data, lvl=NULL) {
if (is.null(lvl)) lvl <- 1 # initialize level
if (lvl == 5) return (data) # we are done
cname <- paste0("level", lvl) # name of current level
nname <- ifelse (lvl == 4, "pid", paste0("level", lvl+1)) # name of next level
agg <- aggregate(as.formula(paste("value~", cname)), data=data, sum) # aggregate data
inds <- (ms <- match(data[,cname], agg[,cname], F)) & is.na(data[,nname]) # find index of leaves to fill
data$value[inds] <- agg$value[ms[inds]] # add new values
f(data, lvl+1) # recurse
}
f(data=y)
# level1 level2 level3 level4 pid description value
# 1 4 NA NA NA NA income 1438238
# 2 4 41 NA NA NA op.income 1437860
# 3 4 41 4120 NA NA manuf.industries 1437860
# 4 4 41 4120 412030 NA manuf 1 15000
# 5 4 41 4120 412030 123456 client 1 15000
# 6 4 41 4120 412050 NA manuf 2 1422860
# 7 4 41 4120 412050 789012 client 2 272860
# 8 4 41 4120 412050 345678 client 3 1150000
# 9 4 42 NA NA NA non-op.income 378
# 10 4 42 4210 NA NA financial 378
# 11 4 42 4210 421005 NA interest 378
# 12 4 42 4210 421005 901234 bank 1 378
I think the aggregation step could be made more efficient by only aggregating a subset of the data if need be. Honestly, this was fun, but a loop is probably the way to go.
Upvotes: 2