Reputation: 3902
I have something called a Node. Both Definition and Theorem are a type of node, but only Definitions should be allowed to have a plural
attribute:
class Definition(Node):
def __init__(self,dic):
self.type = "definition"
super(Definition, self).__init__(dic)
self.plural = move_attribute(dic, {'plural', 'pl'}, strict=False)
@property
def plural(self):
return self._plural
@plural.setter
def plural(self, new_plural):
if new_plural is None:
self._plural = None
else:
clean_plural = check_type_and_clean(new_plural, str)
assert dunderscore_count(clean_plural)>=2
self._plural = clean_plural
class Theorem(Node):
def __init__(self, dic):
self.type = "theorem"
super().__init__(dic)
self.proofs = move_attribute(dic, {'proofs', 'proof'}, strict=False)
# theorems CANNOT have plurals:
# if 'plural' in self:
# raise KeyError('Theorems cannot have plurals.')
As you can see, Definitions have a plural.setter
, but theorems do not. However, the code
theorem = Theorem(some input)
theorem.plural = "some plural"
runs just fine and raises no errors. But I want it to raise an error. As you can see, I tried to check for plurals manually at the bottom of my code shown, but this would only be a patch. I would like to block the setting of ANY attribute that is not expressly defined. What is the best practice for this sort of thing?
I am looking for an answer that satisfies the "chicken" requirement:
I do not think this solves my issue. In both of your solutions, I can append the code t.chicken = 'hi'; print(t.chicken), and it prints hi without error. I do not want users to be able to make up new attributes like chicken.
Upvotes: 12
Views: 1252
Reputation: 69041
The short answer is "Yes, you can."
The follow-up question is "Why?" One of the strengths of Python is the remarkable dynamism, and by restricting that ability you are actually making your class less useful (but see edit at bottom).
However, there are good reasons to be restrictive, and if you do choose to go down that route you will need to modify your __setattr__
method:
def __setattr__(self, name, value):
if name not in ('my', 'attribute', 'names',):
raise AttributeError('attribute %s not allowed' % name)
else:
super().__setattr__(name, value)
There is no need to mess with __getattr__
nor __getattribute__
since they will not return an attribute that doesn't exist.
Here is your code, slightly modified -- I added the __setattr__
method to Node
, and added an _allowed_attributes
to Definition
and Theorem
.
class Node:
def __setattr__(self, name, value):
if name not in self._allowed_attributes:
raise AttributeError('attribute %s does not and cannot exist' % name)
super().__setattr__(name, value)
class Definition(Node):
_allowed_attributes = '_plural', 'type'
def __init__(self,dic):
self.type = "definition"
super().__init__(dic)
self.plural = move_attribute(dic, {'plural', 'pl'}, strict=False)
@property
def plural(self):
return self._plural
@plural.setter
def plural(self, new_plural):
if new_plural is None:
self._plural = None
else:
clean_plural = check_type_and_clean(new_plural, str)
assert dunderscore_count(clean_plural)>=2
self._plural = clean_plural
class Theorem(Node):
_allowed_attributes = 'type', 'proofs'
def __init__(self, dic):
self.type = "theorem"
super().__init__(dic)
self.proofs = move_attribute(dic, {'proofs', 'proof'}, strict=False)
In use it looks like this:
>>> theorem = Theorem(...)
>>> theorem.plural = 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 6, in __setattr__
AttributeError: attribute plural does not and cannot exist
edit
Having thought about this some more, I think a good compromise for what you want, and to actually answer the part of your question about restricting allowed changes to setters only, would be to:
_allowed_attributes
tuple__setattr__
of Node
to always allow modification/creation of attributes with at least one leading _
This gives you some protection against both misspellings and creation of attributes you don't want, while still allowing programmers to work around or enhance the classes for their own needs.
Okay, the new meta class looks like:
class NodeMeta(type):
def __new__(metacls, cls, bases, classdict):
node_cls = super().__new__(metacls, cls, bases, classdict)
allowed_attributes = []
for base in (node_cls, ) + bases:
for name, obj in base.__dict__.items():
if isinstance(obj, property) and hasattr(obj, '__fset__'):
allowed_attributes.append(name)
node_cls._allowed_attributes = tuple(allowed_attributes)
return node_cls
The Node
class has two adjustments: include the NodeMeta
metaclass and adjust __setattr__
to only block non-underscore leading attributes:
class Node(metaclass=NodeMeta):
def __init__(self, dic):
self._dic = dic
def __setattr__(self, name, value):
if not name[0] == '_' and name not in self._allowed_attributes:
raise AttributeError('attribute %s does not and cannot exist' % name)
super().__setattr__(name, value)
Finally, the Node
subclasses Theorem
and Definition
have the type
attribute moved into the class namespace so there is no issue with setting them -- and as a side note, type
is a bad name as it is also a built-in function -- maybe node_type
instead?
class Definition(Node):
type = "definition"
...
class Theorem(Node):
type = "theorem"
...
As a final note: even this method is not immune to somebody actually adding or changing attributes, as object.__setattr__(theorum_instance, 'an_attr', 99)
can still be used -- or (even simpler) the _allowed_attributes
can be modified; however, if somebody is going to all that work they hopefully know what they are doing... and if not, they own all the pieces. ;)
Upvotes: 4
Reputation: 41665
If you really want to prevent all other dynamic attributes. I assume there's a well-defined time window that you want to allow adding attributes.
Below I allow it until object initialisation is finished. (you can control it with allow_dynamic_attribute
variable.
class A:
def __init__(self):
self.allow_dynamic_attribute = True
self.abc = "hello"
self._plural = None # need to give default value
# A.__setattr__ = types.MethodType(__setattr__, A)
self.allow_dynamic_attribute = False
def __setattr__(self, name, value):
if hasattr(self, 'allow_dynamic_attribute'):
if not self.allow_dynamic_attribute:
if not hasattr(self, name):
raise Exception
super().__setattr__(name, value)
@property
def plural(self):
return self._plural
@plural.setter
def plural(self, new_plural):
self._plural = new_plural
a = A()
print(a.abc) # fine
a.plural = "yes" # fine
print(a.plural) # fine
a.dkk = "bed" # raise exception
Or it can be more compact this way, I couldn't figure out how MethodType + super can get along together.
import types
def __setattr__(self, name, value):
if not hasattr(self, name):
raise Exception
else:
super().__setattr__(name,value) # this doesn't work for reason I don't know
class A:
def __init__(self):
self.foo = "hello"
# after this point, there's no more setattr for you
A.__setattr__ = types.MethodType(__setattr__, A)
a = A()
print(a.foo) # fine
a.bar = "bed" # raise exception
Upvotes: 0
Reputation: 1930
You can check for the attribute everytime you access it.
class Theorem(Node):
...
def __getattribute__(self, name):
if name not in ["allowed", "attribute", "names"]:
raise MyException("attribute "+name+" not allowed")
else:
return self.__dict__[name]
def __setattr__(self, name, value):
if name not in ["allowed", "attribute", "names"]:
raise MyException("attribute "+name+" not allowed")
else:
self.__dict__[name] = value
You can build the allowed method list dynamically as a side effect of a decorator:
allowed_attrs = []
def allowed(f):
allowed_attrs.append(f.__name__)
return f
You would also need to add non method attributes manually.
Upvotes: 0
Reputation: 53525
Yes, you can create private members that cannot be modified from outside the class. The variable name should start with two underscores:
class Test(object):
def __init__(self, t):
self.__t = t
def __str__(self):
return str(self.__t)
t = Test(2)
print(t) # prints 2
t.__t = 3
print(t) # prints 2
That said, trying to access such a variable as we do in t.__t = 3
will not raise an exception.
A different approach which you can take to achieve the wanted behavior is using functions. This approach will require "accessing attributes" using functional notation, but if that doesn't bother you, you can get exactly what you want. The following demo "hardcodes" the values, but obviously you can have Theorem()
accept an argument and use it to set values to the attributes dynamically.
Demo:
# -*- coding: utf-8 -*-
def Theorem():
def f(attrib):
def proofs():
return ''
def plural():
return '◊◊◊◊◊◊◊◊'
if attrib == 'proofs':
return proofs()
elif attrib == 'plural':
return plural()
else:
raise ValueError("Attribute [{}] doesn't exist".format(attrib))
return f
t = Theorem()
print(t('proofs'))
print(t('plural'))
print(t('wait_for_error'))
OUTPUT
◊◊◊◊◊◊◊◊
Traceback (most recent call last):
File "/Users/alfasi/Desktop/1.py", line 40, in <module>
print(t('wait_for_error'))
File "/Users/alfasi/Desktop/1.py", line 32, in f
raise ValueError("Attribute [{}] doesn't exist".format(attrib))
ValueError: Attribute [wait_for_error] doesn't exist
Upvotes: -1