Reputation: 793
In Python, how do I calcuate the peaks of a histogram?
I tried this:
import numpy as np
from scipy.signal import argrelextrema
data = [0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4,
5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9,
12,
15, 16, 17, 18, 19, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24,]
h = np.histogram(data, bins=[0, 5, 10, 15, 20, 25])
hData = h[0]
peaks = argrelextrema(hData, np.greater)
But the result was:
(array([3]),)
I'd expect it to find the peaks in bin 0 and bin 3.
Note that the peaks span more than 1 bin. I don't want it to consider the peaks that span more than 1 column as additional peak.
I'm open to another way to get the peaks.
Note:
>>> h[0]
array([19, 15, 1, 10, 5])
>>>
Upvotes: 14
Views: 32234
Reputation: 21
I wrote an easy function:
def find_peaks(a):
x = np.array(a)
max = np.max(x)
length = len(a)
ret = []
for i in range(length):
ispeak = True
if i-1 > 0:
ispeak &= (x[i] > 1.8 * x[i-1])
if i+1 < length:
ispeak &= (x[i] > 1.8 * x[i+1])
ispeak &= (x[i] > 0.05 * max)
if ispeak:
ret.append(i)
return ret
I defined a peak as a value bigger than 180% that of the neighbors and bigger than 5% of the max value. Of course you can adapt the values as you prefer in order to find the best set up for your problem.
Upvotes: 2
Reputation: 1694
Try the findpeaks
library.
pip install findpeaks
# Your input data:
data = [0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,]
# import library
from findpeaks import findpeaks
# Find some peaks using the smoothing parameter.
fp = findpeaks(lookahead=1, interpolate=10)
# fit
results = fp.fit(data)
# Make plot
fp.plot()
# Results with respect to original input data.
results['df']
# Results based on interpolated smoothed data.
results['df_interp']
Upvotes: 5
Reputation: 1193
In computational topology, the formalism of persistent homology provides a definition of "peak" that seems to address your need. In the 1-dimensional case the peaks are illustrated by the blue bars in the following figure:
A description of the algorithm is given in this Stack Overflow answer of a peak detection question.
The nice thing is that this method not only identifies the peaks but it quantifies the "significance" in a natural way.
A simple and efficient implementation (as fast as sorting numbers) and the source material to the above answer given in this blog article: https://www.sthu.org/blog/13-perstopology-peakdetection/index.html
Upvotes: 12