Reputation: 13
I am a newbie learning to code and have an xts object of 1000 rows and 10 columns. I need to subtract every column from each other creating a new xts object keeping the date column. I've tried to use combn but could not get it to create B-A result since it did A-B. What I'm looking for is below.
DATA RESULT
A B C ---> A-B A-C B-A B-C C-A C-B
2010-01-01 1 3 5 2010-01-01 -2 -4 2 -2 4 2
2010-01-02 2 4 6 2010-01-02 -2 -4 2 -2 4 2
2010-01-03 3 5 2 2010-01-03 -2 1 2 3 -1 -3
Upvotes: 1
Views: 902
Reputation: 37045
I built the data using:
x <- zoo::zoo(
data.frame(
A = c(1, 2, 3),
B = c(3, 4, 5),
C = c(5, 6, 2)),
order.by = as.Date(c("2010-01-01", "2010-01-02", "2010-01-03")))
Then I defined a function for creating all possible pairs of two sets:
cross <- function(x, y = x) {
result <- list()
for (a in unique(x)) {
for (b in unique(y)) {
result <- append(result, list(list(left = a, right = b)))
}
}
result
}
To answer your question:
# Build a list of column combinations
combinations <- cross(names(x), setdiff(names(x), names(x)[1]))
# Remove any entries where the left equals the right
combinations <- combinations[vapply(combinations, function(x) { x$left != x$right }, logical(1))]
# Build a user friendly list of names
names(combinations) <- vapply(combinations, function(x) { paste0(x$left, "-", x$right) }, character(1))
# Do the actual computation and combine the results into one object
do.call(cbind, lapply(combinations, function(x, data) { data[, x$left, drop = T] - data[, x$right, drop = T] }, data = x))
Upvotes: 0
Reputation: 886968
We could use outer
to get pairwise combinations of the column names, subset
the dataset 'xt1' based on the column names, get the difference in a list
.
f1 <- Vectorize(function(x,y) list(setNames(xt1[,x]-xt1[,y],
paste(x,y, sep='_'))))
lst <- outer(colnames(xt1), colnames(xt1), FUN = f1)
We Filter
out the list
elements that have sum=0
i.e. the difference between columns A-A
, B-B
, and C-C
, and cbind
to get the expected output.
res <- do.call(cbind,Filter(sum, lst))
res[,order(colnames(res))]
# A_B A_C B_A B_C C_A C_B
#2010-01-01 -2 -4 2 -2 4 2
#2010-01-02 -2 -4 2 -2 4 2
#2010-01-03 -2 1 2 3 -1 -3
d1 <- data.frame(A=1:3, B=3:5, C=c(5,6,2))
library(xts)
xt1 <- xts(d1, order.by=as.Date(c('2010-01-01', '2010-01-02', '2010-01-03')))
Upvotes: 1