Reputation: 5
I have the following codes which I wish to have an output matrix Rpp of (10201,3). I run this code (which takes a bit long) then I check the matrix size of Rpp and I see (1,3), I tried so many things I couldn't find any proper way. The logic of the codes is to take the 6 values (contain 4 constant values and 2 variable values (chosen from 101 values)) and make the calculation for 3 different i1 and store every output vector of 3 in a matrix with (101*101 (pairs of those 2 variable values)) rows and 3 (for each i1) columns.
I appreciate your help
Vp1=linspace(3000,3500,101);
Vp2=3850;
rho1=2390;
rho2=2510;
Vs1=linspace(1250,1750,101);
Vs2=2000;
i1=[10 25 40];
Rpp = zeros(length(Vp1)*length(Vs1),length (i1));
for n=1:length(Vp1)*length(Vs1)
for m=1:length (i1)
for l=1:length(Vp1)
for k=1:length(Vs1)
p=sin(i1)/Vp1(l);
i2=asin(p*Vp2);
j1=asin(p*Vs1(k));
j2=asin(p*Vs2);
a=rho2*(1-2*Vs2^2*p.^2)-rho1*(1-2*Vs1(k).^2*p.^2);
b=rho2*(1-2*Vs2^2*p.^2)+2*rho1*Vs1(k)^2*p.^2;
c=rho1*(1-2*Vs1(k)^2*p.^2)+2*rho2*Vs2^2*p.^2;
d=2*(rho2*Vs2^2-rho1*Vs1(k)^2);
E=b.*cos(i1)./Vp1(l)+c.*cos(i2)/Vp2;
F=b.*cos(j1)./Vs1(k)+c.*cos(j2)/Vs2;
G=a-d*(cos(i1)/Vp1(l)).*(cos(j2)/Vs2);
H=a-d*(cos(i2)/Vp2).*(cos(j1)/Vs1(k));
D=E.*F+G.*H.*p.^2;
Rpp=((b.*(cos(i1)/Vp1(l))-c.*cos((i2)/Vp2)).*F-(a+d*((cos(i1)/Vp1(l))).*(cos(j2)/Vs2)).*H.*p.^2)./D
end
end
end
end
Upvotes: 0
Views: 134
Reputation: 2192
The way you use the for loop is wrong. You're running the calculation for length(Vp1)*length(Vs1)
* length (i1)
* length(Vp1)
* length(Vs1)
times. Here's the correct way. I changed l
into lll
just so I won't confuse it with the number 1. In each iteration of the first for loop, you're running length(Vs1)
times, and you need to assign the result (a 1X3 array) to the Rpp
by using a row number specified by k+(lll-1)*length(Vp1)
.
for lll=1:length(Vp1)
for k=1:length(Vs1)
p=sin(i1)/Vp1(lll);
i2=asin(p*Vp2);
j1=asin(p*Vs1(k));
j2=asin(p*Vs2);
a=rho2*(1-2*Vs2^2*p.^2)-rho1*(1-2*Vs1(k).^2*p.^2);
b=rho2*(1-2*Vs2^2*p.^2)+2*rho1*Vs1(k)^2*p.^2;
c=rho1*(1-2*Vs1(k)^2*p.^2)+2*rho2*Vs2^2*p.^2;
d=2*(rho2*Vs2^2-rho1*Vs1(k)^2);
E=b.*cos(i1)./Vp1(lll)+c.*cos(i2)/Vp2;
F=b.*cos(j1)./Vs1(k)+c.*cos(j2)/Vs2;
G=a-d*(cos(i1)/Vp1(lll)).*(cos(j2)/Vs2);
H=a-d*(cos(i2)/Vp2).*(cos(j1)/Vs1(k));
D=E.*F+G.*H.*p.^2;
Rpp(k+(lll-1)*length(Vp1),:)=((b.*(cos(i1)/Vp1(lll))-c.*cos((i2)/Vp2)).*F-(a+d*((cos(i1)/Vp1(lll))).*(cos(j2)/Vs2)).*H.*p.^2)./D;
end
end
Upvotes: 0
Reputation: 3608
Try this. You 2 outer loops didn't do anything. You never used m
or n
so I killed those 2 loops. Also you just kept overwriting Rpp
on every loop so your initialization of Rpp
didn't do anything. I added an index
var to assign the results to the equation to what I think is the correct part of Rpp.
Vp1=linspace(3000,3500,101);
Vp2=3850;
rho1=2390;
rho2=2510;
Vs1=linspace(1250,1750,101);
Vs2=2000;
i1=[10 25 40];
Rpp = zeros(length(Vp1)*length(Vs1),length (i1));
index = 1;
for l=1:length(Vp1)
for k=1:length(Vs1)
p=sin(i1)/Vp1(l);
i2=asin(p*Vp2);
j1=asin(p*Vs1(k));
j2=asin(p*Vs2);
a=rho2*(1-2*Vs2^2*p.^2)-rho1*(1-2*Vs1(k).^2*p.^2);
b=rho2*(1-2*Vs2^2*p.^2)+2*rho1*Vs1(k)^2*p.^2;
c=rho1*(1-2*Vs1(k)^2*p.^2)+2*rho2*Vs2^2*p.^2;
d=2*(rho2*Vs2^2-rho1*Vs1(k)^2);
E=b.*cos(i1)./Vp1(l)+c.*cos(i2)/Vp2;
F=b.*cos(j1)./Vs1(k)+c.*cos(j2)/Vs2;
G=a-d*(cos(i1)/Vp1(l)).*(cos(j2)/Vs2);
H=a-d*(cos(i2)/Vp2).*(cos(j1)/Vs1(k));
D=E.*F+G.*H.*p.^2;
Rpp(index,:)=((b.*(cos(i1)/Vp1(l))-c.*cos((i2)/Vp2)).*F-(a+d*((cos(i1)/Vp1(l))).*(cos(j2)/Vs2)).*H.*p.^2)./D;
index = index+1;
end
end
Results:
>> size(Rpp)
ans =
10201 3
Upvotes: 1