Reputation: 734
I'm using the pandas DataFrame in high performance calculations. This function is a significant time sink:
def calculate_with_n_electron(self, phi, partition_function,
number_density, n_electron):
ion_populations = pd.DataFrame(data=0.0,
index=partition_function.index.copy(),
columns=partition_function.columns.copy(), dtype=np.float64)
for atomic_number, groups in phi.groupby(level='atomic_number'):
current_phis = (groups / n_electron).replace(np.nan, 0.0).values
phis_product = np.cumproduct(current_phis, axis=0)
neutral_atom_density = (number_density.ix[atomic_number] /
(1 + np.sum(phis_product, axis=0)))
ion_populations.ix[atomic_number, 0] = (
neutral_atom_density.values)
ion_populations.ix[atomic_number].values[1:] = (
neutral_atom_density.values * phis_product)
ion_populations[ion_populations < self.ion_zero_threshold] = 0.0
return ion_populations
here is the function within the bigger context: https://github.com/tardis-sn/tardis/blob/master/tardis/plasma/properties/ion_population.py#L151
Any help would be appreciated!
Upvotes: 1
Views: 1059
Reputation: 52246
Without knowing what the data looks like it's very unlikely this works exactly, but hopefully gives you some ideas - basic approach is to avoid the for
loop and do everything with vectorized operations.
gb = phi.groupby(level='atomic_number')
# do this outside the groupby, use fillna instead of replace
phi = (phi / n_electron).fillna(0.0)
phi['product'] = gb.cumprod()
# assume number_density has one column named 'density`
phi = phi.join(number_density)
phi['density'] = phi['density'] / (1 + gb['product'].transform('sum'))
# bit of a hack to exclude the first element from each group
# from the multiplication
phi['dummy'] = 1
phi['density'] = df['density'] * np.where(gb['dummy'].cumsum() == 1, 1, df['product'])
phi.loc[phi['density'] < self.ion_zero_threshold] = 0.0
Upvotes: 2