Reputation: 4647
Considering the input given to us as a=21, b=36
and GCD (a,b) is d=3
.
If we were supposed to achieve the GCD by solving the equation a * x + b * y = d. How can we evaluate the numerous combinations of positive and negative
integers for x & y
in this equation to fetch the result that satisfies this equation.
Eg: a=21, b=36, (GCD) d=3
21 * x + 36 * y = 3
x = ? and y = ?
Sample answer: x=-5,y=3
How can I do it in JAVA
?
Upvotes: 2
Views: 141
Reputation: 2480
You can do it by Extended Euclidean algorithm. The implementation is here
public class ExtendedEuclid {
// return array [d, a, b] such that d = gcd(p, q), ap + bq = d
static int[] gcd(int p, int q) {
if (q == 0)
return new int[] { p, 1, 0 };
int[] vals = gcd(q, p % q);
int d = vals[0];
int a = vals[2];
int b = vals[1] - (p / q) * vals[2];
return new int[] { d, a, b };
}
public static void main(String[] args) {
int p = Integer.parseInt(args[0]);
int q = Integer.parseInt(args[1]);
int vals[] = gcd(p, q);
System.out.println("gcd(" + p + ", " + q + ") = " + vals[0]);
System.out.println(vals[1] + "(" + p + ") + " + vals[2] + "(" + q + ") = " + vals[0]);
}
}
Input: int vals[] = gcd(21, 36);
Output:
gcd(21,36) = 3
-5(21) + 3(36) = 3
Upvotes: 1