Reputation: 3579
I need to bind structure with deleted copy-constructor to a function. I have reduced what I am trying to achieve into following minimal example:
struct Bar {
int i;
Bar() = default;
Bar(Bar&&) = default;
Bar(const Bar&) = delete;
Bar& operator=(const Bar&) = delete;
};
void foo(Bar b) {
std::cout << b.i << std::endl;
}
int main()
{
Bar b;
b.i = 10;
std::function<void()> a = std::bind(foo, std::move(b)); // ERROR
a();
return 0;
}
From the compiler I get only wailing and gnashing of teeth:
test.cpp:22:27: error: no viable conversion from 'typename _Bind_helper<__is_socketlike<void (&)(Bar)>::value, void (&)(Bar), Bar>::type' (aka '_Bind<__func_type (typename decay<Bar>::type)>') to 'std::function<void ()>'
std::function<void()> a = std::bind(foo, std::move(b));
^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.1.0/../../../../include/c++/5.1.0/functional:2013:7: note: candidate constructor not viable: no known conversion from 'typename _Bind_helper<__is_socketlike<void (&)(Bar)>::value, void (&)(Bar),
Bar>::type' (aka '_Bind<__func_type (typename decay<Bar>::type)>') to 'nullptr_t' for 1st argument
function(nullptr_t) noexcept
^
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.1.0/../../../../include/c++/5.1.0/functional:2024:7: note: candidate constructor not viable: no known conversion from 'typename _Bind_helper<__is_socketlike<void (&)(Bar)>::value, void (&)(Bar),
Bar>::type' (aka '_Bind<__func_type (typename decay<Bar>::type)>') to 'const std::function<void ()> &' for 1st argument
function(const function& __x);
^
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.1.0/../../../../include/c++/5.1.0/functional:2033:7: note: candidate constructor not viable: no known conversion from 'typename _Bind_helper<__is_socketlike<void (&)(Bar)>::value, void (&)(Bar),
Bar>::type' (aka '_Bind<__func_type (typename decay<Bar>::type)>') to 'std::function<void ()> &&' for 1st argument
function(function&& __x) : _Function_base()
^
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.1.0/../../../../include/c++/5.1.0/functional:2058:2: note: candidate template ignored: substitution failure [with _Functor = std::_Bind<void (*(Bar))(Bar)>]: no matching function for call to object of
type 'std::_Bind<void (*(Bar))(Bar)>'
function(_Functor);
^
1 error generated.
So I would like to ask whether there is any workaround that would allow me to bind Bar to foo while keeping Bar move-only.
Edit:
Also consider following code where life of variable b
ends before a
is called:
int main()
{
std::function<void()> a;
{
Bar b;
b.i = 10;
a = std::bind(foo, std::move(b)); // ERROR
}
a();
return 0;
}
Upvotes: 15
Views: 2575
Reputation: 41100
You can get around the CopyConstructible constraint of std::function
with a combination of pointers, lambdas, and std::bind:
auto lambda = [](Bar* b){::foo(std::move(*b));};
std::function<void()> a = std::bind(lambda, &b);
a();
A one liner in C++11 with a lambda and capture-by-reference
std::function<void()> a = [&b](){::foo(std::move(b));};
a()
(Moving comment into my answer)
Following your code edit which adds the constraint that the function object should be able to outlive the scope of the variable being bound to a function, we can accomplish this still with a lambda, only now we should capture a shared_ptr
that uses allocation and move construction to hold a Bar
.
In the example below I use C++14's generalized capture to capture the shared_ptr. @Yakk's solution translates this into C++11.
std::function<void()> a;
{
Bar b;
b.i = 10;
a = [b2 = std::make_shared<decltype(b)>(std::move(b))]()
{
// move the underlying object out from under b2
// which means b2 is in a valid but undefined state afterwards
::foo(std::move(*b2));
};
}
Upvotes: 2
Reputation: 275385
std::function
cannot take move-only invokables. It erases the passed in type down to invoke (with the signature), destroy, and copy.1
Writing a move-only std::function
is only a bit of work. Here is a stab at it in a different context. live example.
std::packaged_task
is amusingly also a move-only type-eraser invoker, but it is heavier weight than you probably want, and getting the value out is a pain.
An easier solution is to abuse a shared pointer:
template<class F>
auto shared_function( F&& f ) {
auto pf = std::make_shared<std::decay_t<F>>(std::forward<F>(f));
return [pf](auto&&... args){
return (*pf)(decltype(args)(args)...);
};
}
which wraps some callable object into a shared pointer, puts that in a lambda perfect forwarding lambda.
This illustrates a problem -- the call doesn't work! All of the above have a const
invokation.
What you want is a task that you can only call once.
template<class Sig>
struct task_once;
namespace details_task_once {
template<class Sig>
struct ipimpl;
template<class R, class...Args>
struct ipimpl<R(Args...)> {
virtual ~ipimpl() {}
virtual R invoke(Args&&...args) && = 0;
};
template<class Sig, class F>
struct pimpl;
template<class R, class...Args, class F>
struct pimpl<R(Args...), F>:ipimpl<R(Args...)> {
F f;
template<class Fin>
pimpl(Fin&&fin):f(std::forward<Fin>(fin)){}
R invoke(Args&&...args) && final override {
return std::forward<F>(f)(std::forward<Args>(args)...);
};
};
// void case, we don't care about what f returns:
template<class...Args, class F>
struct pimpl<void(Args...), F>:ipimpl<void(Args...)> {
F f;
template<class Fin>
pimpl(Fin&&fin):f(std::forward<Fin>(fin)){}
void invoke(Args&&...args) && final override {
std::forward<F>(f)(std::forward<Args>(args)...);
};
};
}
template<class R, class...Args>
struct task_once<R(Args...)> {
task_once(task_once&&)=default;
task_once&operator=(task_once&&)=default;
task_once()=default;
explicit operator bool() const { return static_cast<bool>(pimpl); }
R operator()(Args...args) && {
auto tmp = std::move(pimpl);
return std::move(*tmp).invoke(std::forward<Args>(args)...);
}
// if we can be called with the signature, use this:
template<class F,
class R2=R,
std::enable_if_t<
std::is_convertible<std::result_of_t<F&&(Args...)>,R2>{}
&& !std::is_same<R2, void>{}
>* = nullptr
>
task_once(F&& f):task_once(std::forward<F>(f), std::is_convertible<F&,bool>{}) {}
// the case where we are a void return type, we don't
// care what the return type of F is, just that we can call it:
template<class F,
class R2=R,
class=std::result_of_t<F&&(Args...)>,
std::enable_if_t<std::is_same<R2, void>{}>* = nullptr
>
task_once(F&& f):task_once(std::forward<F>(f), std::is_convertible<F&,bool>{}) {}
// this helps with overload resolution in some cases:
task_once( R(*pf)(Args...) ):task_once(pf, std::true_type{}) {}
// = nullptr support:
task_once( std::nullptr_t ):task_once() {}
private:
std::unique_ptr< details_task_once::ipimpl<R(Args...)> > pimpl;
// build a pimpl from F. All ctors get here, or to task() eventually:
template<class F>
task_once( F&& f, std::false_type /* needs a test? No! */ ):
pimpl( new details_task_once::pimpl<R(Args...), std::decay_t<F>>{ std::forward<F>(f) } )
{}
// cast incoming to bool, if it works, construct, otherwise
// we should be empty:
// move-constructs, because we need to run-time dispatch between two ctors.
// if we pass the test, dispatch to task(?, false_type) (no test needed)
// if we fail the test, dispatch to task() (empty task).
template<class F>
task_once( F&& f, std::true_type /* needs a test? Yes! */ ):
task_once( f?task_once( std::forward<F>(f), std::false_type{} ):task_once() )
{}
};
Note that you can only invoke ()
in an rvalue context with the above task_once
. This is because ()
is destructive, as it should be in your case.
Sadly, the above relies on C++14. And I don't like writing C++11 code nowadays. So, here is a simpler C++11 solution that is less performant:
std::function<void()> a;
{
Bar b;
b.i = 10;
auto pb = std::make_shared<Bar>(std::move(b));
a = [pb]{ return foo(std::move(*pb)); };
}
a();
This shoves a moved copy of b
into a shared pointer, stores it within the std::function
, then destructively consumes it the first time you invoke ()
.
1 It implements move without it (unless it uses the small function optimization, where I hope it uses the move of the type). It also implements convert-back-to-original type, but every type supports that. For some types, it supports check-for-null (ie, cast to bool explicitly), but I am honestly unsure of the exact types it does so to.
Upvotes: 7