Reputation: 45
I am new to Tableau and I have requirements as below:
I need to create a dashboard with a filter on Paywave or EMV and show count of Confirmed and Probable on a geo map.
When I select EMV from the quick filter, it should show a count of confirm & probable for that city. I should be able to drill down and see a count of confirm and probable for zip codes as well.
I am not sure how to achieve the above requirements.
As shown below I have fields like:
EMV Paywave
mrchchant_city, mrch_zipcode confirm probable confirm probable
A 1001 10 15 20 18
B 1005 34 67 78 12
C 2001 24 56 76 45
C 2001 46 19 63 25
Please let me know if any information required from my side.
Upvotes: 0
Views: 233
Reputation: 3413
This will be a lot easier on you if you restructure your data a bit. More often than not, the goal in Tableau is to provide an aggregated summary of the data, rather than showing each individual row. We'll want to group by dimensions (categorical data like "EMV"/"Paywave" or "Confirm"/"Probable"), so this data will be much easier to work with if we get those dimensions into their own columns.
Here's how I personally would go about structuring your table:
+----------------+--------------+---------+----------+-------+-----+
| mrchchant_city | mrch_zipcode | dim1 | dim2 | count | ... |
+----------------+--------------+---------+----------+-------+-----+
| A | 1001 | Paywave | confirm | 20 | ... |
| A | 1001 | Paywave | probable | 18 | ... |
| A | 1001 | EMV | confirm | 10 | ... |
| A | 1001 | EMV | probable | 15 | ... |
| B | 1005 | Paywave | confirm | 78 | ... |
| B | 1005 | Paywave | probable | 12 | ... |
| B | 1005 | EMV | confirm | 34 | ... |
| B | 1005 | EMV | probable | 67 | ... |
| C | 2001 | Paywave | confirm | 76 | ... |
| C | 2001 | Paywave | probable | 45 | ... |
| C | 2001 | EMV | confirm | 24 | ... |
| C | 2001 | EMV | probable | 56 | ... |
| C | 2001 | Paywave | confirm | 63 | ... |
| C | 2001 | Paywave | probable | 25 | ... |
| C | 2001 | EMV | confirm | 46 | ... |
| C | 2001 | EMV | probable | 19 | ... |
| ... | ... | ... | ... | ... | ... |
+----------------+--------------+---------+----------+-------+-----+
(Sorry about the dim1 and dim2, I don't really know what those dimensions represent. You can/should obviously pick a more intuitive nomenclature.)
Once you have a table with columns for your categorical data, it will be simple to filter and group by those dimensions.
Upvotes: 1