Reputation: 8277
I have been using boost::geometry
library in a program, mostly for handling polygon objects.
I am now trying to optimize my code to scale better with larger polygons. One my functions checks for a given polygon and a given point (usually inside the polygon) the minimum and maximum distance between the point and polygon outer ring.
I do it by looping on the polygon edges:
polygon pol;
point myPoint;
double min = 9999999, max = 0;
for(auto it1 = boost::begin(bg::exterior_ring(pol)); it1 != boost::end(bg::exterior_ring(pol)); ++it1){
double distance = bg::distance(*it1, myPoint);
if(max < distance)
max = distance;
if(min > distance)
min = distance;
}
I am hoping that there are algorithms faster than this one, linear in the polygon number of edges. Is there such a thing already inside the boost::geometry
library?
Upvotes: 4
Views: 3924
Reputation: 353
For best performances you should use an RTree with boost::geometry::index. Creating the RTree has a cost, but then computing the ditance of a point to any of the (multi)polygon ring will be much faster. Example code:
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/geometries.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <iostream>
#include <vector>
int main()
{
namespace bg = boost::geometry;
namespace bgi = boost::geometry::index;
typedef bg::model::point<double, 2, bg::cs::cartesian> point;
typedef bg::model::polygon<point> polygon;
point p{ 0, 0 };
// create some polygon and fill it with data
polygon poly;
double a = 0;
double as = bg::math::two_pi<double>() / 100;
for (int i = 0; i < 100; ++i, a += as)
{
double c = cos(a);
double s = sin(a);
poly.outer().push_back(point{10 * c, 10 * s});
poly.inners().resize(1);
poly.inners()[0].push_back(point{5 * c, 5 * s});
}
// make sure it is valid
bg::correct(poly);
// create rtree containing objects of type bg::model::pointing_segment
typedef bg::segment_iterator<polygon const> segment_iterator;
typedef std::iterator_traits<segment_iterator>::value_type segment_type;
bgi::rtree<segment_type, bgi::rstar<4> > rtree(bg::segments_begin(poly),
bg::segments_end(poly));
// get 1 nearest segment
std::vector<segment_type> result;
rtree.query(bgi::nearest(p, 1), std::back_inserter(result));
BOOST_ASSERT(!result.empty());
std::cout << bg::wkt(result[0]) << ", " << bg::distance(p, result[0]) << std::endl;
return 0;
}
Upvotes: 0
Reputation: 393694
I'd suggest you can use the builtin strategies for finding the minimum distance between the polygon and the point:
#include <boost/geometry.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/io/io.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/algorithms/distance.hpp>
namespace bg = boost::geometry;
using point = bg::model::d2::point_xy<double>;
using polygon = bg::model::polygon<point>;
int main() {
polygon pol;
boost::geometry::read_wkt(
"POLYGON((2 1.3,2.4 1.7,2.8 1.8,3.4 1.2,3.7 1.6,3.4 2,4.1 3,5.3 2.6,5.4 1.2,4.9 0.8,2.9 0.7,2 1.3)"
"(4.0 2.0, 4.2 1.4, 4.8 1.9, 4.4 2.2, 4.0 2.0))", pol);
point myPoint(7, 7);
double min = 9999999, max = 0;
std::cout << "Minimal distance: " << bg::distance(pol, myPoint);
}
Prints
Minimal distance: 4.71699
You should consider ranking the distances first using comparable_distance
. As you can see the sample there suggests looping over all the sampled distances... so I don't think the library has a better offering at this time.
More sophisticated algorithms are planned, of which a number may be related to this problem:
Note also that Boost Geometry Index has a related predicate comparable_distance_far
but it's not exposed as of yet.
You can improve at least a bit by using comparable_distance here for now.
Features have been planned and it looks like there is a good chance that requesting them on the mailing list/Boost Trac will help getting them there.
Upvotes: 2