Reputation: 1676
I coded a function for Simpson's Rule of numerical integration. For values of n
more than or equal to 34, the function returns 0.
Here, n
is the number of intervals, a
is the start point, and b
is the end point.
import math
def simpsons(f, a,b,n):
x = []
h = (b-a)/n
for i in range(n+1):
x.append(a+i*h)
I=0
for i in range(1,(n/2)+1):
I+=f(x[2*i-2])+4*f(x[2*i-1])+f(x[2*i])
return I*(h/3)
def func(x):
return (x**(3/2))/(math.cosh(x))
x = []
print(simpsons(func,0,100,34))
I am not sure why this is happening. I also coded a function for the Trapezoidal Method and that does not return 0 even when n
= 50. What is going on here?
Upvotes: 0
Views: 449
Reputation: 384
Wikipedia has the code for Simpson's rule in Python :
from __future__ import division # Python 2 compatibility
import math
def simpson(f, a, b, n):
"""Approximates the definite integral of f from a to b by the
composite Simpson's rule, using n subintervals (with n even)"""
if n % 2:
raise ValueError("n must be even (received n=%d)" % n)
h = (b - a) / n
s = f(a) + f(b)
for i in range(1, n, 2):
s += 4 * f(a + i * h)
for i in range(2, n-1, 2):
s += 2 * f(a + i * h)
return s * h / 3
def func(x):
return (x**(3/2))/(math.cosh(x))
Upvotes: 1