Reputation: 1611
I have a question about PCA using the caret package and an error message I'm getting, "cannot rescale a constant/zero column to unit variance".
Consider two sets of similar code. The first works just fine:
a = c(0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, -1, -1, NA)
b = c(1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, -1, -1, NA)
c = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)
df = data.frame(a, b, c)
trans = preProcess(df, method = c("center", "scale", "pca"))
The variance of each column can be seen as:
apply(df, 2, var, na.rm=TRUE)
Note that the variance of column "c" is 0.11
Let's say I change the second to last integer in column "c" to 1 instead of 0, and then run the same code:
a = c(0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, -1, -1, NA)
b = c(1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, -1, -1, NA)
c = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)
df = data.frame(a, b, c)
trans = preProcess(df, method = c("center", "scale", "pca"))
I get an error message:
Error in prcomp.default(x, scale = TRUE, retx = FALSE) :
cannot rescale a constant/zero column to unit variance
If you look at the variance for column c, it's 0.059:
apply(df, 2, var, na.rm=TRUE)
Can anyone please help me understand the difference between these two sets of code and why the second gives an error when the first does not?
Thank you
Upvotes: 2
Views: 5238
Reputation: 9123
PCA only uses complete observations. In your second definition of df
above, a PCA analysis will drop the last row due to missingness. And column c
is constant within the remaining rows.
Note: my answer is around PCA generally and not specific to the caret package.
Upvotes: 3