Reputation: 603
I want to scale the numerical values (similar like R's scale
function) based on different groups.
Noted: when I talked about the scale, I am referring to this metric
(x-group_mean)/group_std
Dataset (for demonstration the ideas) for example:
advertiser_id value
10 11
10 22
10 2424
11 34
11 342342
.....
Desirable results:
advertiser_id scaled_value
10 -0.58
10 -0.57
10 1.15
11 -0.707
11 0.707
.....
referring to this link: implementing R scale function in pandas in Python? I used the function for def scale and want to apply for it, like this fashion:
dt.groupby("advertiser_id").apply(scale)
but get an error:
ValueError: Shape of passed values is (2, 15770), indices imply (2, 23375)
In my original datasets the number of rows is 15770, but I don't think in my case the scale function maps a single value to more than 2 (in this case) results.
I would appreciate if you can give me some sample code or some suggestions into how to modify it, thanks!
Upvotes: 3
Views: 711
Reputation: 54390
First, np.std
behaves differently than most other languages in that it delta degrees of freedom defaults to be 0. Therefore:
In [9]:
print df
advertiser_id value
0 10 11
1 10 22
2 10 2424
3 11 34
4 11 342342
In [10]:
print df.groupby('advertiser_id').transform(lambda x: (x-np.mean(x))/np.std(x, ddof=1))
value
0 -0.581303
1 -0.573389
2 1.154691
3 -0.707107
4 0.707107
This matches R
result.
2nd, if any of your groups (by advertiser_id
) happens to contain just 1 item, std
would be 0 and you will get nan
. Check if you get nan
for this reason. R
would return nan
in this case as well.
Upvotes: 1