Reputation: 193
I've run into a bit of a confusing problem with OpenGL, it's rather simple but I've failed to find any directly related information.
I'm creating several new textures every frame, and right after creation I bind them, use them for drawing, and then delete them right after.
If I delete every texture right after it was used, the last one to be drawn replaces the previous ones(but their different geometry works as it should). If I batch my deletions after all drawing has been done, it works as expected, but if I do any draw calls at all after deleting the textures, the texture used in the last drawcall replaces the old ones(which could be some common permanent sprite texture).
I've tried using glFlush(), which didn't seem to do anything at all, not deleting the textures at all gives the correct behaviour, and also not drawing anything at all between deleting the textures and calling SwapBuffers() works.
This is not what my code looks like, but this is what the relevant parts boil down to:
int Tex1, Tex2, Tex3;
glGenTextures(1, &Tex1);
glBindTexture(GL_TEXTURE_2D, Tex1);
// ... Fill Texture with data, set correct filtering etc.
glDrawElements(GL_TRIANGLES, ...); // Using Tex1
glGenTextures(1, &Tex2);
glBindTexture(GL_TEXTURE_2D, Tex2);
// ... Fill Texture with data, set correct filtering etc.
glDrawElements(GL_TRIANGLES, ...); // Using Tex2
// I delete some textures here.
glDeleteTextures(1, &Tex1);
glDeleteTextures(1, &Tex2);
// If I comment out this section, everything works correctly
// If I leave it in, this texture replaces Tex1 and Tex2, but
// the geometry is correct for each geometry batch.
glGenTextures(1, &Tex3);
glBindTexture(GL_TEXTURE_2D, Tex3);
// ... Fill Texture with data, set correct filtering etc.
glDrawElements(GL_TRIANGLES, ...); // Using Tex3
glDeleteTextures(1, &Tex3);
// ...
SwapBuffers();
I suspect this might have something to do with OpenGL buffering my draw calls, and by the time they are actually processed the textures are deleted? It doesn't really make sense to me though, why would drawing something else after deleting the previous textures cause this behaviour?
The generated textures are text strings, that may or may not change each frame, right now I create new textures for each string each frame and then render the texture and discard it right after. The bitmap data is generated with Windows GDI.
I'm not really looking for advice on efficiency, ideally I want an answer that can quote the documentation on the expected/correct behaviour for rendering using temporary textures like this, as well as possible common gotchas with this approach.
Upvotes: 1
Views: 1003
Reputation: 54592
The expected behavior is clear. You can delete the objects as soon as you are done using them. In your case, after you made the draw calls that use the textures, you can call glDeleteTextures()
on those textures. No additional precautions are required from your side.
Under the hood, OpenGL will typically execute the draw calls asynchronously. So the texture will still be used after the draw call returns. But that's not your problem. The driver is responsible for tracking and managing the lifetime of objects to keep them around until they are not used anymore.
The clearest expression of this I found in the spec is on page 28 of the OpenGL 4.5 spec:
If an object is deleted while it is currently in use by a GL context, its name is immediately marked as unused, and some types of objects are automatically unbound from binding points in the current context, as described in section 5.1.2. However, the actual underlying object is not deleted until it is no longer in use.
In your code, this means that the driver can't delete the textures until the GPU completed the draw call using the texture.
Why that doesn't work in your case is hard to tell. One possibility is always that something in your code unintentionally deletes the texture earlier than it should be. With complex software architectures, that happens much more easily than you might think. For example, a really popular cause is that people wrap OpenGL objects in C++ classes, and let those C++ objects go out of scope while the underlying OpenGL object is still in use.
So you should definitely double check (for example by using debug breakpoints or logging) that no code that deletes textures is invoked at unexpected times.
The other option is a driver bug. While object lifetime management is not entirely trivial, it is so critical that it's hard to imagine it being broken for a very basic case. But it's certainly possible, and more or less likely depending on vendor and platform.
As a workaround, you could try not deleting the texture objects, and only specifying new data (using glTexImage2D()
) for the same objects instead. If the texture size does not change, it would probably be more efficient to only replace the data with glTexSubImage2D()
anyway.
Upvotes: 2