Reputation: 621
I have a moving graphic whose velocity decays geometrically every frame. I want to find the initial velocity that will make the graphic travel a desired distance in a given number of frames.
Using these variables:
I can come up with d = v * (r0 + r1 + r2 + ...)
So if I want to find the v to travel 200 pixels in 3 frames with a decay rate of 90%, I would adapt to:
d = 200
r = .9
v = d / (r0 + r1 + r2)
That doesn't translate well to code, since I have to edit the expression if the number of frames changes. The only solution I can think of is this (in no specific language):
r = .9
numFrames = 3
d = 200
sum = 1
for (i = 1; i < numFrames; i++) {
sum = sum + power(r, i);
}
v = d / sum;
Is there a better way to do this without using a loop?
(I wouldn't be surprised if there is a mistake in there somewhere... today is just one of those days..)
Upvotes: 0
Views: 325
Reputation: 183
What you have here is a geometric sequence. See the link: http://www.mathsisfun.com/algebra/sequences-sums-geometric.html
To find the sum of a geometric sequence, you use this formula:
sum = a * ((1 - r^n) / (1 - r))
Since you are looking for a, the initial velocity, move the terms around:
a = sum * ((1-r) / (1 - r^n))
In Java:
int distanceInPixels = SOME_INTEGER;
int decayRate = SOME_DECIMAl;
int numberOfFrames = SOME_INTEGER;
int initialVelocity; //this is what we need to find
initialVelocity = distanceinPixel * ((1-decayRate) / (1-Math.pow(decayRate, NumberOfFrames)));
Using this formula you can get any one of the four variables if you know the values of the other three. Enjoy!
Upvotes: 2
Reputation: 495
According to http://mikestoolbox.com/powersum.html, you should be able to reduce your for loop to:
F(x) = (x^n - 1)/(x-1)
Upvotes: 0