Reputation: 91
I have a dataframe that looks like this:
master.head(5)
Out[73]:
hour price
day
2014-01-01 0 1066.24
2014-01-01 1 1032.11
2014-01-01 2 1028.53
2014-01-01 3 963.57
2014-01-01 4 890.65
In [74]: master.index.dtype
Out[74]: dtype('<M8[ns]')
What I need to do is update the hour in the index with the hour in the column but the following approaches don't work:
In [82]: master.index.hour = master.index.hour(master['hour'])
TypeError: 'numpy.ndarray' object is not callable
In [83]: master.index.hour = [master.index.hour(master.iloc[i,0]) for i in len(master.index.hour)]
TypeError: 'int' object is not iterable
How to proceed?
Upvotes: 2
Views: 2610
Reputation: 394129
IIUC I think you want to construct a TimedeltaIndex
:
In [89]:
df.index += pd.TimedeltaIndex(df['hour'], unit='h')
df
Out[89]:
hour price
2014-01-01 00:00:00 0 1066.24
2014-01-01 01:00:00 1 1032.11
2014-01-01 02:00:00 2 1028.53
2014-01-01 03:00:00 3 963.57
2014-01-01 04:00:00 4 890.65
Just to compare against using apply
:
In [87]:
%timeit df.index + pd.TimedeltaIndex(df['hour'], unit='h')
%timeit df.index + df['hour'].apply(lambda x: pd.Timedelta(x, 'h'))
1000 loops, best of 3: 291 µs per loop
1000 loops, best of 3: 1.18 ms per loop
You can see that using a TimedeltaIndex is significantly faster
Upvotes: 4
Reputation: 5414
master.index =
pd.to_datetime(master.index.map(lambda x : x.strftime('%Y-%m-%d')) + '-' + master.hour.map(str) , format='%Y-%m-%d-%H.0')
Upvotes: 0