Reputation: 12539
I have a list of nested dictionaries that looks like this:
[{'posts': {'item_1': 1,
'item_2': 8,
'item_3': 105,
'item_4': 324,
'item_5': 313, }},
{'edits': {'item_1': 1,
'item_2': 8,
'item_3': 61,
'item_4': 178,
'item_5': 163}},
{'views': {'item_1': 2345,
'item_2': 330649,
'item_3': 12920402,
'item_4': 46199102,
'item_5': 43094955}}]
I would like to write it to an excel file in this format:
+--------+-------+-------+-----------+
| | posts | edits | views |
+--------+-------+-------+-----------+
| item_1 | 1 | 1 | 2345 |
| item_2 | 8 | 8 | 330649 |
| item_3 | 105 | 61 | 12920402 |
| item_4 | 324 | 178 | 46199102 |
| item_5 | 313 | 163 | 430949955 |
+--------+-------+-------+-----------+
I am using the xlsxwriter
library and trying the following and variations on the following without success:
for item in data:
for col_name, data in item.iteritems():
col += 1
worksheet.write(row, col, col_name)
for row_name, row_data in data.iteritems():
col += 1
worksheet.write(row, col, row_name)
worksheet.write(row + 1, col, row_data)
I'm wondering if it makes sense to rework my nested dictionary object or is it possible to write to excel in it's current form?
When I say without much success i mean, that I can get it to write certain thigns to the excel file, like column names or row or the data, but I am unable to get it to write like pictured above. I'm not getting errors, I suspect i jsut don't know how to unpack this object properly to loop through it. In the code above, I am given a combination of row and column names on row 1 and all of the values on row 2.
My output for the code above is:
+--+-------+--------+--------+--------+--------+--------+-------+--------+--------+--------+--------+--------+-------+----------+----------+--------+----------+--------+
| | posts | item_4 | item_5 | item_2 | item_3 | item_1 | edits | item_4 | item_5 | item_2 | item_3 | item_1 | views | item_4 | item_5 | item_2 | item_3 | item_1 |
+--+-------+--------+--------+--------+--------+--------+-------+--------+--------+--------+--------+--------+-------+----------+----------+--------+----------+--------+
| | | 324 | 313 | 8 | 105 | 1 | | 178 | 163 | 8 | 61 | 1 | | 46199102 | 43094955 | 330649 | 12920402 | 2345 |
+--+-------+--------+--------+--------+--------+--------+-------+--------+--------+--------+--------+--------+-------+----------+----------+--------+----------+--------+
Upvotes: 2
Views: 5098
Reputation: 21676
import pandas as pd
data = [{'posts': {'item_1': 1,
'item_2': 8,
'item_3': 105,
'item_4': 324,
'item_5': 313, }
},
{'edits': {'item_1': 1,
'item_2': 8,
'item_3': 61,
'item_4': 178,
'item_5': 163}
},
{'views': {'item_1': 2345,
'item_2': 330649,
'item_3': 12920402,
'item_4': 46199102,
'item_5': 43094955}
}]
final_df = pd.DataFrame()
for id in range(0,len(data)):
df = pd.DataFrame.from_dict(data[id])
final_df = pd.concat([final_df, df], axis=1)
print (final_df)
final_df.to_excel('data.xlsx')
Upvotes: 1
Reputation: 46779
As an alternative, this could be solved using csv
as follows:
import csv
import itertools
nested = [
{'posts': {'item_1': 1, 'item_2': 8, 'item_3': 105, 'item_4': 324, 'item_5': 313,}},
{'edits': {'item_1': 1, 'item_2': 8, 'item_3': 61, 'item_4': 178, 'item_5': 163}},
{'views': {'item_1': 2345, 'item_2': 330649, 'item_3': 12920402, 'item_4': 46199102, 'item_5': 43094955}}]
headings = [d.keys()[0] for d in nested]
entries = [sorted(nested[index][col].items()) for index, col in enumerate(headings)]
with open('output.csv', 'wb') as f_output:
csv_output = csv.writer(f_output)
csv_output.writerow(['items'] + headings)
for cols in itertools.izip_longest(*entries, fillvalue=['<n/a>']*len(entries[0])):
csv_output.writerow([cols[0][0]] + [col[1] for col in cols])
This would give you output.csv
as follows:
items,posts,edits,views
item_1,1,1,2345
item_2,8,8,330649
item_3,105,61,12920402
item_4,324,178,46199102
item_5,313,163,43094955
Upvotes: 2
Reputation: 53663
Presently you have a dict each of posts
, edits
, and views
which are each keyed to your "items", seems redundant.
Alternatively, create a single dictionary keyed to your "items", and have the value of each item be a dictionary of posts
, edits
, views
, like:
items = {}
items = {{'item_1': {'posts':1, 'edits':0, 'views':2345}
{'item_2': {'posts':2, 'edits':8, 'views':330649}}
This way you can simply refer to items['item_2']['edits']
(which should yield 8) or items['item_1']['views']
(which should yield 2345), etc.
In your case, then something like:
# write the headers -- this could be refined
row = 0
worksheet.write(0, 1, 'posts')
worksheet.write(0, 2, 'edits')
worksheet.write(0, 3, 'views')
# write the data:
for itm in items:
row += 1
worksheet.write(row, 0, itm)
for col, prop in enmumerate(items[itm]):
worksheet.write(row, col+1, prop)
Upvotes: 2