Reputation: 217
I have 6 dataframes, all with unique column names,the same amount of columns, and the data was collected over the same time period.
Each data frame has a time stamp and minute averages were taken, but some dataframes having missing data and the columns lengths are not equal.
I would like to merge the data frames to display all 6 data frames side by side, but only at times that data was present across all 6 dataframes, i.e. the df with the lowest numbers of columns, which is "H1_min"
> head(H1_min)
h1min h1temp h1humid h1db h1hz
1 2015-09-06 00:00:00 21.5 73.10 39.252 117.1900
2 2015-09-06 00:02:00 21.5 72.50 39.434 125.0000
3 2015-09-06 00:03:00 21.5 72.65 39.338 127.9325
4 2015-09-06 00:04:00 21.5 73.00 39.206 148.4400
5 2015-09-06 00:06:00 21.5 73.00 39.253 144.5350
6 2015-09-06 00:07:00 21.5 72.30 39.293 156.2500
The colnames of the other dataframes are similar, but H1 = H2 thru H6.
dput(head(H2_min))
"2015-09-08 20:21:00", "2015-09-08 20:22:00", "2015-09-08 20:23:00",
"2015-09-08 20:24:00", "2015-09-08 20:25:00", "2015-09-08 20:26:00",
"2015-09-08 20:27:00", "2015-09-08 20:28:00", "2015-09-08 20:29:00",
"2015-09-08 20:30:00", "2015-09-08 20:31:00", "2015-09-08 20:32:00",
"2015-09-08 20:33:00", "2015-09-08 20:34:00", "2015-09-08 20:35:00"
), class = "factor"), h2temp = c(23.4, 23.4, 23.3, 23.2, 23.2,
23.1), h2humid = c(38.5, 38.3, 38.05, 38.1, 38.6, 38.6), h2db = c(38.834,
38.655, 38.679, 38.695, 38.806, 38.702), h2hz = c(191.41, 152.34,
162.11, 113.28, 121.09, 164.06)), .Names = c("h2min", "h2temp",
"h2humid", "h2db", "h2hz"), row.names = c(NA, 6L), class = "data.frame")
dput(head(H4_min))
"2015-09-08 17:10:00", "2015-09-08 17:11:00", "2015-09-08 17:12:00",
"2015-09-08 17:13:00"), class = "factor"), h4temp = c(27.2, 27.2,
27.2, 27.2, 27.2, 27.2), h4humid = c(33.5, 33.5, 33.5, 33.5,
33.5, 33.5), h4db = c(36.8225, 36.921, 36.8766666666667, 36.91,
36.8336666666667, 36.768), h4hz = c(134.765, 136.068333333333,
137.373333333333, 126.3, 139.323333333333, 128.906666666667)), .Names =
c("h4min", "h4temp", "h4humid", "h4db", "h4hz"), row.names = c(NA, 6L), class = "data.frame")
this attempt yields:
H_min<-merge(H1_min, H2_min, H3_min, H4_min, H5_min, H6_min, by.x = 'row.names', by.y ='h1_min')
Error in fix.by(by.y, y) : 'by' must specify a uniquely valid column
Upvotes: 0
Views: 2209
Reputation: 259
A bit simpler way to fix this based on @jlhoward answer.
qxts1 <- xts(df1[,-1], order.by = df1[,1])
qxts2 <- xts(df2[,-1], order.by = df2[,1])
xts.lst = list(qxts1, qxts2)
result <- do.call(merge.xts, c(xts.lst, all=FALSE))
result <- data.frame(result)
For xts or zoo, make sure your TimeStamp is a vector or matrix carrying data as Date, POSIXct, chron, ...
Upvotes: 0
Reputation: 59355
Another way to do this is to convert the data.frames to xts objects and then use merge.xts(...)
, which merges based on the timestamp automatically, and then convert the result back to a data.frame.
Most of the code below is just to create reproducible sample data. The actual work is in the 6 lines at the end.
# create representative example - you have this already
time <- as.character(as.POSIXct("2015-09-06") + 60*(0:30))
temp = c(23.4, 23.4, 23.3, 23.2, 23.2, 23.1)
humid = c(38.5, 38.3, 38.05, 38.1, 38.6, 38.6)
db = c(38.834, 38.655, 38.679, 38.695, 38.806, 38.702)
hz = c(191.41, 152.34, 162.11, 113.28, 121.09, 164.06)
set.seed(123) # for reproducible example
get.df <- function(n, name) {
df <- data.frame(min=sort(sample(time,n)),
temp=sample(temp,n, replace=TRUE),
humid=sample(humid,n,replace=TRUE),
db = sample(db,n,replace=TRUE),
hz = sample(hz,n,replace=TRUE))
names(df) <- paste0(name,names(df))
df
}
H1 <- get.df(20,"h1") # 20 rows at random times
H2 <- get.df(20,"h2") # 20 rows at random times
H3 <- get.df(25,"h3") # 25 rows at random times
H4 <- get.df(30,"h4") # 30 rows at random times
# you start here
library(xts)
lst <- list(H1, H2, H3, H4)
xts.lst <- lapply(lst, function(df) xts(df[,2:ncol(df)], order.by=as.POSIXct(df[[1]])))
result <- do.call(merge.xts, c(xts.lst, all=FALSE))
result <- data.frame(result)
head(result)
# h1temp h1humid h1db h1hz h2temp h2humid h2db h2hz h3temp h3humid h3db h3hz h4temp h4humid h4db h4hz
# 2015-09-06 00:03:00 23.2 38.05 38.679 162.11 23.4 38.5 38.695 121.09 23.3 38.3 38.702 191.41 23.4 38.5 38.679 162.11
# 2015-09-06 00:04:00 23.1 38.05 38.655 121.09 23.4 38.3 38.679 152.34 23.2 38.1 38.679 121.09 23.1 38.3 38.834 121.09
# 2015-09-06 00:09:00 23.2 38.50 38.679 162.11 23.4 38.5 38.655 113.28 23.3 38.3 38.834 191.41 23.4 38.6 38.655 191.41
# 2015-09-06 00:12:00 23.4 38.30 38.806 164.06 23.4 38.3 38.679 164.06 23.4 38.6 38.834 162.11 23.4 38.3 38.655 121.09
# 2015-09-06 00:13:00 23.4 38.60 38.679 152.34 23.2 38.6 38.655 164.06 23.3 38.6 38.679 162.11 23.4 38.5 38.679 121.09
# 2015-09-06 00:14:00 23.1 38.50 38.806 191.41 23.2 38.6 38.695 152.34 23.4 38.6 38.834 162.11 23.3 38.5 38.834 191.41
Upvotes: 2
Reputation: 4024
library(dplyr)
library(magrittr)
library(tidyr)
H1_min =
data_frame(
h1min = c("2015-09-06 00:00:00", "2015-09-06 00:02:00"),
h1temp = c(21.5, 21.5),
h1humid = c(73.10, 72.50),
h1db = c(39.252, 39.434),
h1hz = c(117.1900, 125.000) )
H2_min = H1_min %>% mutate(h1hz = c(117.1900, NA))
answer =
list(H1_min, H2_min) %>%
lapply(. %>% setNames(c("min",
"temp",
"humid",
"db",
"hz"))) %>%
bind_rows(.id = "location") %>%
gather(variable, value, -location, -min) %>%
mutate(prefix = "h") %>%
unite(new_variable, prefix, location, variable, sep = "") %>%
spread(new_variable, value) %>%
filter(complete.cases(.))
Upvotes: 0